Featured Research

from universities, journals, and other organizations

New research technique can help nanoparticles deliver drug treatments

Date:
May 7, 2013
Source:
Wayne State University Division of Research
Summary:
A researcher has successfully tested a technique that can lead to more effective use of nanoparticles as a drug delivery system.

A Wayne State University researcher has successfully tested a technique that can lead to more effective use of nanoparticles as a drug delivery system.

Joshua Reineke, Ph.D., assistant professor of pharmaceutical sciences in the Eugene Applebaum College of Pharmacy and Health Sciences, examined how a biodegradable polymer particle called polylactic-co-glycolic acid (PLGA) breaks down in live tissue.

He believes the potential impact of his work is broad, as nanoparticles increasingly have been developed as carriers of drug treatments for numerous diseases and as imaging agents; they also are used in numerous consumer products. The kinetics of nanoparticle biodegradation is an important factor that can control how and where a drug is released, impacting treatment efficacy as well as potential toxicity to nontarget tissues from nanoparticle exposure.

"If nanoparticles given to a patient release a drug before particles can ever get to target tissue, then we get high toxicity and low effect," Reineke said. "Conversely, if particles are drawn to a tissue but don't release the drug until long afterward, then we also don't get the therapeutic effect."

Much previous research has studied nanoparticle biodegradation in vitro, but Reineke and the study's lead author, Abdul Khader Mohammad, Ph.D., a recent WSU graduate, believe they are the first to quantify biodegradation rates after systemic administration.

Their study, "Quantitative Detection of PLGA Nanoparticle Degradation in Tissues following Intravenous Administration," was published recently in the journal Molecular Pharmaceutics. It was supported by funds from the Department of Pharmaceutical Sciences and the Office for the Vice President of Research at Wayne State.

Keeping concentration levels the same, Reineke and Mohammad administered PLGA as particles in sizes of 200 and 500 nanometers (nm) intravenously in mice, an important administration route of nanomedicines for cancer applications, for example, and measured the quantity of the nanoparticles in all tissues and the rates at which it degraded. They then compared those rates to those predicted by in vitro measurements.

Reineke said the 200 nm particles degraded much faster in the body than in vitro, while the 500 nm particles degraded similarly to in vitro analyses. The liver and spleen had the highest concentration of polymers and therefore were easiest to analyze.

Researchers found that 500 nm particles degraded faster in the liver than the spleen, but for the 200 nm size the degradation rate in the liver and the spleen were similar.

"It's known that larger particles degrade differently, and we verified that," Reineke said, "but they didn't quite degrade in vivo the way we would expect. We found that among tissue types there are differences in how they degrade."

"That tells us that in vitro degradation doesn't predict in vivo degradation very well, because we see so many differences."

Reineke said that by in vivo testing of other types of nanoparticles, a mathematical model can be developed to help determine which are most effective and have the lowest toxicity for a given application.

"Optimizing a therapeutic system that utilizes nanoparticles is really about getting that timing correct. In order to do that, we have to know how and when the particles are going to release the drug."


Story Source:

The above story is based on materials provided by Wayne State University Division of Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. Abdul Khader Mohammad, Joshua J. Reineke. Quantitative Detection of PLGA Nanoparticle Degradation in Tissues following Intravenous Administration. Molecular Pharmaceutics, 2013; 130402144543004 DOI: 10.1021/mp300559v

Cite This Page:

Wayne State University Division of Research. "New research technique can help nanoparticles deliver drug treatments." ScienceDaily. ScienceDaily, 7 May 2013. <www.sciencedaily.com/releases/2013/05/130507115506.htm>.
Wayne State University Division of Research. (2013, May 7). New research technique can help nanoparticles deliver drug treatments. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2013/05/130507115506.htm
Wayne State University Division of Research. "New research technique can help nanoparticles deliver drug treatments." ScienceDaily. www.sciencedaily.com/releases/2013/05/130507115506.htm (accessed July 26, 2014).

Share This




More Matter & Energy News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins