Featured Research

from universities, journals, and other organizations

Two genes that combine to cause rare syndrome identified

Date:
May 8, 2013
Source:
Duke Medicine
Summary:
Mutations in genes that regulate cellular metabolism found in families with ataxia, dementia and reproductive failure.

Researchers from Massachusetts General Hospital (MGH) and Duke University have identified genetic mutations that appear to underlie a rare but devastating syndrome combining reproductive failure with cerebellar ataxia -- a lack of muscle coordination -- and dementia. In a paper that will appear in the May 23 New England Journal of Medicine and is receiving early online release, the investigators describe finding mutations in one or both of two genes involved in a cellular process called ubiquitination in affected members of five unrelated families.

"This study highlights, for the first time, the importance of the ubiquitin system in a syndrome characterized by ataxia and hypogonadotropic hypogonadism -- reproductive failure due to abnormal signaling from the brain or pituitary gland," says Stephanie Seminara, MD, of the Reproductive Endocrine Unit in the MGH Department of Medicine, co-senior author of the report. "It also demonstrates how combining robust genomics with detailed functional assays can unlock complex genetic architecture."

Caused by lesions in the part of the brain responsible for coordination and balance, cerebellar ataxia can begin with difficulty walking or speaking and progress to complete disability of those functions. Genes associated with several syndromes characterized by ataxia have been identified, but none had previously been associated with the rare combination of ataxia and reproductive failure, which was first described more than 100 years ago. Several such patients have been referred to the MGH Reproductive Endocrine Unit, including a Palestinian family with several affected members who also developed dementia.

Seminara notes that, while ataxia and hypogonadotropic hypogonadism each may have several possible genetic causes, the combination of both conditions is so rare that it is more likely to be caused by mutations in a particular gene or related genes. In collaboration with researchers from the Center for Human Disease Modeling at Duke -- directed by Nicholas Katsanis, PhD, co-senior author of the NEJM article -- her team conducted whole-exome sequencing of DNA from an affected member of the Palestinian family. That screening found rare variants in both copies of 13 genes, and two of those variants were also found in samples from the patient's two affected siblings but not in several unaffected family members.

Both of the mutated genes are involved in ubiquitination, a process by which cellular proteins are marked for degredation by a protein called ubiquitin. One of them, RNF216, codes for an enzyme that attaches ubiquitin to the protein; the other, OTUD4, codes for a protein that removes ubiquitin. The researchers then sequenced both of these proteins in samples from an additional nine affected individuals from seven different families. They found that one of those individuals had two different RNF216 mutations, four others -- two in the same family -- had mutations in a single copy of that gene, but none had mutated versions of OTUD4.

All of the individuals with RNF216 mutations had similar medical histories, characterized by a lack of normal hormonal secretion, progressive ataxia and dementia; and all of those with mutations in both genes died in their 30s or 40s. Neuroimaging studies revealed similar brain abnormalities -- including atrophy of the cerebellum and cortex -- in individuals with RNF216 mutations. The four studied individuals without RNF216 mutations had very different histories, with less severe symptoms.

To get a better idea of the functional consequences of mutations in these two genes, the researchers disrupted their expression in zebrafish and found that blocking either RNF216 or OTUD4 caused disorganization of the cerebellum and reduced the size of eyes and a portion of the midbrain. The abnormalities were even greater when both genes were blocked but could be eliminated if production of the relevant proteins was induced by the introduction of the corresponding human RNA.

"The presence of RNF216 mutations in several families made its role in causing this syndrome clear, but finding OTUD4 mutation in only one family raised the question of whether it actually contributed to the disease or was just an 'innocent bystander'," says Katsanis. "The zebrafish work provided critical evidence that both genes function in a common pathway, since blocking either of them produced similar effects. And the fact that blocking both genes had a synergistic effect lends further evidence to the two genes' operating in the same pathway and to the contribution of OTUD4 mutations to this syndrome."

Although exactly how these mutations lead to the symptoms seen in these individuals is unknown, the researchers note that identifying these genes may someday lead to therapies -- potentially including drugs currently being developed for other disorders involving ubiquitination, including Parkinson's disease -- and enable genetic screening and counseling for affected families. They also hope to investigate whether less severe mutations in these genes may contribute to the presence of ataxia, dementia or hypogonadism in isolation.

Seminara is an assistant professor of Medicine at Harvard Medical School, and Katsanis is the Jean and George W. Brumley Professor of Cell Biology and Pediatrics at Duke University Medical Center. The co-lead authors of the NEJM report are David Margonin, MD, PhD, MGH Department of Neurology; Maria Kousi, PhD, Duke Center for Human Disease Modeling; and Yee-Ming Chan, MD, PhD, MGH Reproductive Endocrine Unit and Boston Children's Hospital. The study was supported by National Institute for Child Health and Human Development grants R01 HD043341, R01 HD042601 and U54 HD028138 and by other National Institutes of Health grants.


Story Source:

The above story is based on materials provided by Duke Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. David H. Margolin, Maria Kousi, Yee-Ming Chan, Elaine T. Lim, Jeremy D. Schmahmann, Marios Hadjivassiliou, Janet E. Hall, Ibrahim Adam, Andrew Dwyer, Lacey Plummer, Stephanie V. Aldrin, Julia O'Rourke, Andrew Kirby, Kasper Lage, Aubrey Milunsky, Jeff M. Milunsky, Jennifer Chan, E. Tessa Hedley-Whyte, Mark J. Daly, Nicholas Katsanis, Stephanie B. Seminara. Ataxia, Dementia, and Hypogonadotropism Caused by Disordered Ubiquitination. New England Journal of Medicine, 2013; 130508140047000 DOI: 10.1056/NEJMoa1215993

Cite This Page:

Duke Medicine. "Two genes that combine to cause rare syndrome identified." ScienceDaily. ScienceDaily, 8 May 2013. <www.sciencedaily.com/releases/2013/05/130508213102.htm>.
Duke Medicine. (2013, May 8). Two genes that combine to cause rare syndrome identified. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2013/05/130508213102.htm
Duke Medicine. "Two genes that combine to cause rare syndrome identified." ScienceDaily. www.sciencedaily.com/releases/2013/05/130508213102.htm (accessed October 21, 2014).

Share This



More Health & Medicine News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Nigeria Beat Its Ebola Outbreak

How Nigeria Beat Its Ebola Outbreak

Newsy (Oct. 20, 2014) The World Health Organization has declared Nigeria free of Ebola. Health experts credit a bit of luck and the government's initial response. Video provided by Newsy
Powered by NewsLook.com
Another Study Suggests Viagra Is Good For The Heart

Another Study Suggests Viagra Is Good For The Heart

Newsy (Oct. 20, 2014) An ingredient in erectile-dysfunction medications such as Viagra could improve heart function. Perhaps not surprising, given Viagra's history. Video provided by Newsy
Powered by NewsLook.com
Ebola Worries End for Dozens on U.S. Watch Lists

Ebola Worries End for Dozens on U.S. Watch Lists

Reuters - US Online Video (Oct. 20, 2014) Forty-three people who had contact with Thomas Eric Duncan, the first person diagnosed with Ebola in the U.S., were cleared overnight of twice-daily monitoring after 21 days of showing no symptoms. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
CDC Calls for New Ebola Safety Guidelines

CDC Calls for New Ebola Safety Guidelines

AP (Oct. 20, 2014) Centers for Disease Control and Prevention Director Dr. Tom Frieden laid out new guidelines for health care workers when dealing with the deadly Ebola virus including new precautions when taking off personal protective equipment. (Oct. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins