Science News

... from universities, journals, and other research organizations

Methylphenidate 'Normalizes' Activation in Key Brain Areas in Kids With ADHD, Study Suggests

May 9, 2013 — The stimulant drug methylphenidate "normalizes" activation of several brain areas in young patients with attention-deficit/hyperactivity disorder (ADHD), according to a review published in the May Harvard Review of Psychiatry.


Share This:

Studies using functional magnetic resonance imaging (fMRI) show increased activation of key brain areas after a dose of methylphenidate in young patients with ADHD, according to the systematic review by Constance A. Moore, PhD, and colleagues of the University of Massachusetts Medical School. They write, "In most cases, this increase 'normalized' activation of at least some brain areas to levels seen in typically developing children."

How Do ADHD Medications Affect the Brain in ADHD Patients?

In a research review, Dr Moore and colleagues identified nine previous studies using fMRI to study patterns of brain activation in response to a single dose of methylphenidate. Perhaps best known by the brand name Ritalin, methylphenidate is a common and effective treatment for ADHD. "Although methylphenidate has been shown to significantly improve the behavioral symptoms associated with ADHD, both the mechanism behind its therapeutic effect and its direct effects on brain function are unknown," the researchers write.

The studies evaluated methylphenidate-induced fMRI changes in various brain areas, as the participants performed different types of tasks. Most of the studies included adolescent boys with ADHD, along with matched groups of young people without ADHD.

Methylphenidate altered activation patterns in widely distributed areas of the brain in ADHD patients, the results showed. The main brain areas involved were the frontal lobes, the basal ganglia, and cerebellum: "Abnormalities in these regions have all been implicated in patients with ADHD," Dr Moore and coauthors write.

Different areas were activated during different types of fMRI tasks. Several studies assessed performance on "inhibitory control" tasks -- the ability to control certain types of accustomed ("prepotent") responses. In three out of five studies, methylphenidate "at least partially normalized" brain activation in ADHD patients, compared to healthy young people.

Different Tasks Affect Different Brain Areas

A few studies showed similar normalization of brain responses with methylphenidate on tasks of selective attention and time perception -- although not on tasks evaluating working memory. Methylphenidate mainly affected activation in the frontal lobes during inhibitory control tasks. During selective attention tasks, a wider range of brain areas were affected.

Since none of the studies evaluated ADHD symptoms on and off methylphenidate, there was no way to link the changes in brain activation with clinical improvement. Brain activation patterns with methylphenidate differed for patients who were versus were not previously treated with stimulants for ADHD.

Patients with ADHD have "age-inappropriate frequency or severity of inattentive or hyperactive-impulsive behaviors," according to the authors. It affects about five percent of children worldwide, and a growing body of evidence suggests that ADHD persists throughout adolescence and into adulthood. Functional fMRI provides a safe, noninvasive way to study how stimulants like methylphenidate may act in the brain of ADHD patients.

The new analysis suggests that methylphenidate partially normalizes activation in key brain areas thought to be involved in ADHD. The studies "may provide evidence that methylphenidate facilitates the return of brain function in ADHD patients to, or close to, a typically functioning state," Dr Moore and colleagues write. They call for further research to confirm that methylphenidate-induced changes in specific brain areas are correlated with improvement in ADHD symptoms.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

|

Story Source:

The above story is based on materials provided by Wolters Kluwer Health: Lippincott Williams & Wilkins, via Newswise.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Czerniak, Suzanne M.; Sikoglu, Elif M.; King, Jean A.; Kennedy, David N.; Mick, Eric; Frazier, Jean; Moore, Constance M. Areas of the Brain Modulated by Single-Dose Methylphenidate Treatment in Youth with ADHD During Task-Based fMRI: A Systematic Review. Harvard Review of Psychiatry, May/June 2013 DOI: 10.1097/HRP.0b013e318293749e
APA

MLA

Note: If no author is given, the source is cited instead.

Search ScienceDaily

Number of stories in archives: 140,690

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily's archives for related news topics,
the latest news stories, reference articles, science videos, images, and books.

Recommend ScienceDaily on Facebook, Twitter, and Google:

Other social bookmarking and sharing services:

|

 
Interested in ad-free access? If you'd like to read ScienceDaily without ads, let us know!
  more breaking science news

Social Networks


Follow ScienceDaily on Facebook, Twitter,
and Google:

Recommend ScienceDaily on Facebook, Twitter, and Google +1:

Other social bookmarking and sharing tools:

|

Breaking News

... from NewsDaily.com

  • more science news

In Other News ...

  • more top news

Science Video News


Lost And Found

Cognitive scientists ran an experiment to understand how the brain searches for an object with a known shape. They asked subjects to track the. ...  > full story

Strange Science News

 

Free Subscriptions

... from ScienceDaily

Get the latest science news with our free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Feedback

... we want to hear from you!

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?