Featured Research

from universities, journals, and other organizations

Reading the unreadable: 'Unopenable' scrolls will yield their secrets to new X-ray system

Date:
May 16, 2013
Source:
Engineering and Physical Sciences Research Council
Summary:
Pioneering X-ray technology is making it possible to read fragile rolled-up historical documents for the first time in centuries. Old parchment is often extremely dry and liable to crack and crumble if any attempt is made to physically unroll or unfold it. The new technology, however, eliminates the need to do so by enabling parchment to be unrolled or unfolded 'virtually' and the contents displayed on a computer screen.

Technique works by scanning parchment with x-rays.
Credit: Image courtesy of Engineering and Physical Sciences Research Council

Pioneering X-ray technology is making it possible to read fragile rolled-up historical documents for the first time in centuries.

Related Articles


Old parchment is often extremely dry and liable to crack and crumble if any attempt is made to physically unroll or unfold it. The new technology, however, eliminates the need to do so by enabling parchment to be unrolled or unfolded 'virtually' and the contents displayed on a computer screen.

Developed at Cardiff University and Queen Mary, University of London with funding from the Engineering and Physical Sciences Research Council (EPSRC), the breakthrough means historians will be able to access previously unusable written sources and gain new insight into the past.

No other technique developed anywhere in the world has the capability to make text concealed in rolled or folded historical parchments genuinely legible. The system has now been tested successfully on a 19th century scroll provided by the Norfolk Record Office.

In a completely innovative approach to the problem, the technique works by scanning parchment with X-rays in order to detect the presence of iron contained in 'iron gall ink' -- the most commonly used ink in Europe between the 12th and 19th centuries.

Using a method called microtomography, a 3-dimensional 'map' showing the ink's exact location is built up by creating images made from a series of X-ray 'slices' taken through the parchment.

Advanced software specially developed by the Cardiff project team combines the data obtained with information about the way the parchment is rolled or folded up and calculates exactly where the ink sits on the parchment. An image of the document as it would appear unrolled or unfolded can then be produced.

The key difference between the new method and other techniques previously developed to read un-openable historical documents is the unprecedentedly high contrast resolution it provides to distinguish between ink and parchment. This means the ink shows up very well against the parchment and is genuinely readable.

The scanning takes place at the Institute of Dentistry at Queen Mary, University of London led by Dr Graham Davis: "Because no commercial or research X-ray tomography scanners were capable of providing the quality of image we needed, we've developed our own advanced scanner which is also being adapted for a diverse range of other scientific uses, including those within our own Institute of Dentistry where enhanced, high contrast images are enabling the detection and analysis of features in teeth that we haven't been able to see before."

Professor Tim Wess of Cardiff University says: "This is a milestone in historical information recovery. The conservation community is rightly very protective of old documents and isn't prepared to risk damaging them by opening them. Our breakthrough means they won't have to. Across the world, literally thousands of previously unusable documents up to around a thousand years old could now become available for historical research. It really will be possible to read the unreadable."


Story Source:

The above story is based on materials provided by Engineering and Physical Sciences Research Council. Note: Materials may be edited for content and length.


Cite This Page:

Engineering and Physical Sciences Research Council. "Reading the unreadable: 'Unopenable' scrolls will yield their secrets to new X-ray system." ScienceDaily. ScienceDaily, 16 May 2013. <www.sciencedaily.com/releases/2013/05/130516105612.htm>.
Engineering and Physical Sciences Research Council. (2013, May 16). Reading the unreadable: 'Unopenable' scrolls will yield their secrets to new X-ray system. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2013/05/130516105612.htm
Engineering and Physical Sciences Research Council. "Reading the unreadable: 'Unopenable' scrolls will yield their secrets to new X-ray system." ScienceDaily. www.sciencedaily.com/releases/2013/05/130516105612.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com
Analysis: NTSB Wants Better Black Boxes

Analysis: NTSB Wants Better Black Boxes

AP (Jan. 22, 2015) NTSB investigators recommended Thursday that long-distance passenger planes carry improved technology to allow them to be found more easily in a crash, as well as include enhanced cockpit recording technology. (Jan. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins