Featured Research

from universities, journals, and other organizations

Competition in the quantum world

Date:
May 19, 2013
Source:
University of Innsbruck
Summary:
Physicists have gained a deep insight into the nature of quantum mechanical phase transitions. Scientists have simulated the competition between two rival dynamical processes at a novel type of transition between two quantum mechanical orders.

Physicists experimentally gained a deep insight into the nature of quantum mechanical phase transitions.
Credit: IQOQI/Ritsch

Innsbruck physicists led by Rainer Blatt and Peter Zoller have gained a deep insight into the nature of quantum mechanical phase transitions. They are the first scientists that simulated the competition between two rival dynamical processes at a novel type of transition between two quantum mechanical orders.

They have published the results of their work in the journal Nature Physics.

"When water boils, its molecules are released as vapor. We call this change of the physical state of matter a phase transition," explains Sebastian Diehl from the Institute of Theoretical Physics at the University of Innsbruck. Together with his colleagues from the Institute for Experimental Physics and the theorist Markus Mueller from the Complutense University of Madrid, he studied the transition between two quantum mechanical orders in a way never before observed. The quantum physicists in Innsbruck use a new device for the experiment, which is currently considered to be one of the most promising developments in quantum physics: a quantum simulator. It is based on a small-scale quantum computer and can simulate physical phenomena a classical computer cannot investigate efficiently. "Such a quantum simulator allows us to experimentally study quantum phenomena in many-body systems that are coupled to their environment," explain experimental physicists Philipp Schindler and Thomas Monz.

Observing the competition

With just a few trapped ions the scientists simulate the complex physical processes of quantum mechanical phase transitions. To achieve this, they have to manipulate and control the particles with high accuracy; the experimental physicists in Innsbruck are world leaders in this field. "For this experiment we use a programmable quantum simulator with up to five ions," says Philipp Schindler. One of the particles is used as a means to couple the system to the classical environment in a controlled manner. The other ions are used for carrying out quantum operations. "We call this an open quantum simulator. Usually we want to suppress this coupling because it destroys the fragile quantum effects in the system. Here, however, we use it to bring order into the quantum mechanical system," explains Schindler. "In our specific case, we engineer a classical environment, which generates dissipative dynamics, leading to fragile long-range quantum mechanical correlations between distant particles." In the following step, this dynamics is then set in competition with a different type of interactions, which interrupts the dynamics that create the quantum mechanical order. "By doing this, we are able to observe how the competition between these two processes takes place and what precisely occurs right at the transition between two distinct orders of matter," explains theoretical physicist Sebastian Diehl.

Error reduction

The experiment demands an enormous degree of precision, which requires immediate error corrections to be able to simulate the physical processes correctly. Since a comprehensive error correction, as developed for quantum computers, involves considerable resource overheads, the physicists in Innsbruck chose another promising alternative path. They identified the most important sources of error occurring during the simulation and specifically targeted them. Schindler is convinced: "This way of error reduction will surely set an example for other experiments. While general quantum error correction remains a long-term goal, we may be able to successfully use this type of error correction a lot sooner for reliable quantum simulation of larger systems," adds Markus Mueller.


Story Source:

The above story is based on materials provided by University of Innsbruck. Note: Materials may be edited for content and length.


Journal Reference:

  1. P. Schindler, M. Mόller, D. Nigg, J. T. Barreiro, E. A. Martinez, M. Hennrich, T. Monz, S. Diehl, P. Zoller, R. Blatt. Quantum simulation of dynamical maps with trapped ions. Nature Physics, 2013; DOI: 10.1038/NPHYS2630

Cite This Page:

University of Innsbruck. "Competition in the quantum world." ScienceDaily. ScienceDaily, 19 May 2013. <www.sciencedaily.com/releases/2013/05/130519194833.htm>.
University of Innsbruck. (2013, May 19). Competition in the quantum world. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2013/05/130519194833.htm
University of Innsbruck. "Competition in the quantum world." ScienceDaily. www.sciencedaily.com/releases/2013/05/130519194833.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) — After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) — It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) — The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins