Featured Research

from universities, journals, and other organizations

Polymer breakthrough inspired by trees and ancient celtic knots

Date:
May 22, 2013
Source:
National University of Ireland, Galway
Summary:
A new slow-motion method of controlling the synthesis of polymers, which takes inspiration from both trees and Celtic knots, opens up new possibilities in areas including medical devices, drug delivery, elastics and adhesives.

A new slow-motion method of controlling the synthesis of polymers, which takes inspiration from both trees and Celtic Knots, opens up new possibilities in areas including medical devices, drug delivery, elastics and adhesives.
Credit: Image courtesy of National University of Ireland, Galway

A new slow-motion method of controlling the synthesis of polymers, which takes inspiration from both trees and Celtic Knots, opens up new possibilities in areas including medical devices, drug delivery, elastics and adhesives.

Scientists at the Network of Excellence for Functional Biomaterials (NFB) in the National University of Ireland Galway have just published their breakthrough polymerization method in Nature Communications. Their new polymerization technique allows for the easy creation of new complex, multi-functional, branched compounds.

The research team was led by NFB's Dr Wenxin Wang at the National University of Ireland Galway, who said: "The versatility of our synthesis process could allow us to tailor polymer properties, such as structure, functionality, strength, size, density and degradation -- with previously unimaginable ease."

The researchers took inspiration from ancient arts, and use their new technique to build up 'Celtic Knots'. These materials have chains that only link to themselves in an interlaced pattern. In addition, the new technique can also create hyper-branching polymers, which branch and spread outwards like trees.

Polymers are a broad class of natural and synthetic compounds, built up of many parts known as monomers, which connect together in fast growing chains. Until now, creating more complex branched polymers, known as dendrimers (from the Greek word "dendron" meaning "tree"), has been a labour intensive and time consuming process.

Now, for the first time, "dendritic" or tree like polymers have been synthesised in bulk, with branch points after every few monomers of the build process. This allows a far higher degree of branching than previously obtainable, and opens up new possibilities for the use of polymers.

The new process developed by the team, in collaboration with Dr Julien Poly from the Institut de Science des Matériaux de Mulhouse, France, is called 'vinyl oligomer combination'. In effect the process allows a simple "one-pot" procedure that leads to easy up-scale of the process.The expectation is that these intricate woven and branched polymers will be cheap to produce and high in quality, as the technique is fully scalable.

Dr Wenxin Wang is trying to uncover therapies for diseases such as diabetic ulcers and Epidermolysis Bullosa, which causes chronic skin conditions: "We are currently investigating the use of these new materials for biomedical applications such as drug/gene delivery, cross linkable hydrogel materials and skin adhesives. However, in reality this synthesis method could be used for a wide range of materials outside the biomedical field."

Dr Wenxin Wang continued: "It is interesting to note the period of difficulty often encountered with break through developments. For example, the road to acceptance of dendrimer materials was long and winding. Because this work contradicts long-standing theories about polymerization, we too have faced the challenge of acceptance. Finally, researchers are seeing the importance of these materials, and the ease at which new structures can be synthesized. Although these are early steps, we are looking forward to seeing the future realization of these structures in a wide range of applications."

The research, funded by Science Foundation Ireland (SFI), the Health Research Board (HRB), DEBRA Ireland and DEBRA Austria is published in Nature Communications journal.


Story Source:

The above story is based on materials provided by National University of Ireland, Galway. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tianyu Zhao, Yu Zheng, Julien Poly, Wenxin Wang. Controlled multi-vinyl monomer homopolymerization through vinyl oligomer combination as a universal approach to hyperbranched architectures. Nature Communications, 2013; 4: 1873 DOI: 10.1038/ncomms2887

Cite This Page:

National University of Ireland, Galway. "Polymer breakthrough inspired by trees and ancient celtic knots." ScienceDaily. ScienceDaily, 22 May 2013. <www.sciencedaily.com/releases/2013/05/130522085335.htm>.
National University of Ireland, Galway. (2013, May 22). Polymer breakthrough inspired by trees and ancient celtic knots. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2013/05/130522085335.htm
National University of Ireland, Galway. "Polymer breakthrough inspired by trees and ancient celtic knots." ScienceDaily. www.sciencedaily.com/releases/2013/05/130522085335.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) — MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) — Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) — New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins