Featured Research

from universities, journals, and other organizations

Researchers coax clays to make human bone

Date:
May 30, 2013
Source:
North Dakota State University
Summary:
Whether damaged by injury, disease or age, your body as an adult can't create entirely new bone, but maybe science can. Researchers are making strides in tissue engineering, designing scaffolds that may lead to ways to regenerate bone. Scientists have developed a novel method that uses nanosized clays to make scaffolds to mineralize bone minerals such as hydroxyapatite.

The Katti research group at North Dakota State University, Fargo, reports that nanoclays mediate human mesenchymal stem cell differentiation into bone cells and grow bone. The Katti research group uses amino acids to modify clay structures and the modified nanoclays coax new bone growth. This scanning electron microscopy image shows beginnings of bone formation through appearance of “extra cellular matrix” formation by human mesenchymal stem cells in nanoclay scaffolds.
Credit: A.H. Ambre, D. R. Katti, K. S. Katti, J Biomed Mater Res Part A, doi: 10.1002/jbm.a.34561 15 Feb 2013

Weak bones, broken bones, damaged bones, arthritic bones. Whether damaged by injury, disease or age, your adult body can't create entirely new bone, but maybe science can. Researchers at North Dakota State University, Fargo, are making strides in tissue engineering, designing scaffolds that may lead to ways to regenerate bone. Published in the Journal of Biomedical Materials Research Part A, the research of Dr. Kalpana Katti, Dr. Dinesh Katti and graduate student Avinash Ambre includes a novel method that uses nanosized clays to make scaffolds to mineralize bone minerals such as hydroxyapatite.

The NDSU research team's 3-D mesh scaffold is composed of degradable materials that are compatible to human tissue. Over time, the cells generate bone and the scaffold deteriorates. As indicated in the NDSU team's published scientific research from 2008 to 2013, the nanoclays enhance the mechanical properties of the scaffold by enabling scaffold to bear load while bone generates. An interesting finding by the Katti group has shown that the nanoclays also impart useful biological properties to the scaffold.

"The biomineralized nanoclays also impart osteogenic or bone-forming abilities to the scaffold to enable birth of bone," said Dr. Kalpana Katti, Distinguished Professor of civil engineering at NDSU. "Although it would have been exciting to say that this finding had a 'Eureka moment,' this discovery was a methodical exploration of simulations and modeling, indicating that amino acid modified nanoclays are viable new nanomaterials," said Katti. The work was initially published in the Journal of Biomacromolecules in 2005. The current findings point toward the potential use of nanoclays for broader applications in medicine.

The NDSU's group most recent study in the Journal of Biomedical Materials Research Part A, published online Feb. 15, 2013, reports that nanoclays mediate human mesenchymal stem cell differentiation into bone cells and grow bone. The Katti research group uses amino acids, the building blocks of life, to modify clay structures and the modified nanoclays coax new bone growth. "Our current research studies underway involve the use of bioreactors that mimic fluid/blood flow in the human body during bone tissue regeneration," said Dr. Kalpana Katti.

The Katti group at NDSU has pioneered the use of nanoclays in bone regeneration since 2008, with research results appearing in Biomedical Materials, ASME Journal of Nanotechnology for Engineering and Medicine, Materials Science and Engineering C, along with the February 2013 publication in the Journal of Biomedical Materials Research Part A.

Bone tissue engineering represents important promise for regenerative medicine, according to Dr. Kalpana Katti. National Institutes of Health information shows that more than one million Americans have a hip or knee replaced each year. An aging population, in addition to orthopedic injuries of military veterans, and diseases such as osteoporosis and arthritis mean that the promise of scientific research to generate human bone could have far-reaching implications in the future.


Story Source:

The above story is based on materials provided by North Dakota State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Avinash H. Ambre, Dinesh R. Katti, Kalpana S. Katti. Nanoclays mediate stem cell differentiation and mineralized ECM formation on biopolymer scaffolds. Journal of Biomedical Materials Research Part A, 2013; DOI: 10.1002/jbm.a.34561

Cite This Page:

North Dakota State University. "Researchers coax clays to make human bone." ScienceDaily. ScienceDaily, 30 May 2013. <www.sciencedaily.com/releases/2013/05/130530152858.htm>.
North Dakota State University. (2013, May 30). Researchers coax clays to make human bone. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2013/05/130530152858.htm
North Dakota State University. "Researchers coax clays to make human bone." ScienceDaily. www.sciencedaily.com/releases/2013/05/130530152858.htm (accessed April 17, 2014).

Share This



More Health & Medicine News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins