Featured Research

from universities, journals, and other organizations

Spintronics approach enables new quantum technologies

Date:
June 4, 2013
Source:
University of Chicago
Summary:
Researchers highlight the power of emerging quantum technologies in two recent articles. New technologies exploit quantum mechanics, the physics that dominates the atomic world, to perform disparate tasks such as nanoscale temperature measurement and processing quantum information with lasers.

This artist’s rendering shows all-optical control of an individual electronic spin within a diamond. This spin is associated with a naturally occurring defect in diamond known as the nitrogen-vacancy center, a promising quantum bit (qubit) for quantum information processing. The University of Chicago’s David Awschalom and his associates have developed techniques to initialize, manipulate, and read out the electronic spin of this qubit using only pulses of light.
Credit: Peter Allen

A team of researchers including members of the University of Chicago's Institute for Molecular Engineering highlight the power of emerging quantum technologies in two recent papers published in the Proceedings of the National Academy of Sciences (PNAS). These technologies exploit quantum mechanics, the physics that dominates the atomic world, to perform disparate tasks such as nanoscale temperature measurement and processing quantum information with lasers.

The two papers are both based on the manipulation of the same material, an atomic-scale defect in diamond known as the nitrogen vacancy center. Both works also leverage the intrinsic "spin" of this defect for the applications in temperature measurement and information processing. This spintronics approach involves understanding and manipulating the spin of electronics for technological advancement.

"These studies build on research efforts undertaken over the last 20 years to isolate and control single electronic spins in the solid state," said David Awschalom, a principle investigator on both papers and a Liew Family Professor in Molecular Engineering at UChicago. "Much of the initial motivation for working in this field was driven by the desire to make new computing technologies based on the principles of quantum physics. In recent years the research focus has broadened as we've come to appreciate that these same principles could enable a new generation of nanoscale sensors."

Controlling qubits with light

In one PNAS paper posted April 22 and published in the May 7 print edition, Awschalom and six co-authors at the University of California, Santa Barbara and the University of Konstanz describe a technique that offers new routes toward the eventual creation of quantum computers, which would possess far more capability than modern classical computers.

In this application, Awschalom's team has developed protocols to fully control the quantum state of the defect with light instead of electronics. The quantum state of interest in this defect is its electronic spin, which acts as quantum bit, or qubit, the basic unit of a quantum computer. In classical computers, bits of information exist in one of only two states: zero or one. In the quantum mechanical realm, objects can exist in multiple states at once, enabling more complex processing.

This all-optical scheme for controlling qubits in semiconductors "obviates the need to have microwave circuits or electronic networks," Awschalom said. "Instead, everything can be done solely with photons, with light."

As a fully optical method, it shows promise as a more scalable approach to qubit control. In addition, this scheme is more versatile than conventional methods and could be used to explore quantum systems in a broad range of materials that might otherwise be difficult to develop as quantum devices.

Single spin thermometers

The quantum thermometer application, reported in a PNAS contribution posted online May 6 and published in the May 21 print edition, represents a new direction for the manipulation of quantum states, which is more commonly linked to computing, communications, and encryption. In recent years, defect spins had also emerged as promising candidates for nanoscale sensing of magnetic and electric fields at room temperature. With thermometry now added to the list, Awschalom foresees the possibility of developing a multifunctional probe based on quantum physics.

"With the same sensor you could measure magnetic fields, electric fields and now temperature, all with the same probe in the same place at approximately the same time," he said. "Perhaps most importantly, since the sensor is an atomic-scale defect that could be contained within nanometer-scale particles of diamond, you can imagine using this system as a thermometer in challenging environments such as living cells or microfluidic circuits."

The key aspect of this innovation is the development of control techniques for manipulating the spin that make it a much more sensitive probe of temperature shifts. "We've been exploring the potential of defect spins for thermometry for the past few years," said David Toyli, a graduate student in physics at UCSB and lead author of the temperature sensing work.

"This latest work is exciting because we've succeeded in adapting techniques used for stabilizing quantum information to measuring temperature-dependent changes in the quantum states. These techniques minimize the effects of environmental noise and allow us to make much more sensitive temperature measurements."

The team of researchers, also including Slava Dobrovitski of the Department of Energy's Ames Laboratory in Iowa, conducted experiments to determine the temperature range over which the spins could operate as a useful thermometer. It turns out that the particle spins can operate quite well at a wide temperature range, from room temperature to 500 degrees Kelvin (approximately 70 to 400 degrees Fahrenheit).

The chemical properties of a diamond-based thermometer also support the idea that this system could be useful for measuring temperature gradients in biological systems, such as the interior of living cells, Awschalom said. But the initial studies suggest the method is so flexible that it probably lends itself to uses yet to be imagined. "Like any new technology development, the exciting thing is what people will do with this now."


Story Source:

The above story is based on materials provided by University of Chicago. Note: Materials may be edited for content and length.


Journal References:

  1. C. G. Yale, B. B. Buckley, D. J. Christle, G. Burkard, F. J. Heremans, L. C. Bassett, D. D. Awschalom. All-optical control of a solid-state spin using coherent dark states. Proceedings of the National Academy of Sciences, 2013; 110 (19): 7595 DOI: 10.1073/pnas.1305920110
  2. D. M. Toyli, C. F. de las Casas, D. J. Christle, V. V. Dobrovitski, D. D. Awschalom. Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. Proceedings of the National Academy of Sciences, 2013; 110 (21): 8417 DOI: 10.1073/pnas.1306825110

Cite This Page:

University of Chicago. "Spintronics approach enables new quantum technologies." ScienceDaily. ScienceDaily, 4 June 2013. <www.sciencedaily.com/releases/2013/06/130604153329.htm>.
University of Chicago. (2013, June 4). Spintronics approach enables new quantum technologies. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2013/06/130604153329.htm
University of Chicago. "Spintronics approach enables new quantum technologies." ScienceDaily. www.sciencedaily.com/releases/2013/06/130604153329.htm (accessed August 27, 2014).

Share This




More Computers & Math News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Hackerspace Provides Hackers Creative Haven

Hackerspace Provides Hackers Creative Haven

AP (Aug. 27, 2014) — HeatSync Labs, a so-called hackerspace in Mesa, Arizona provides members and the public alike a space to allow their creative juices to flow and make their tech dreams into a reality. (Aug 27) Video provided by AP
Powered by NewsLook.com
Smartphone App Tracks Your Heart Rate

Smartphone App Tracks Your Heart Rate

Ivanhoe (Aug. 27, 2014) — A new app that can track your heart rate 24/7 is available for download in your app store and its convenience could save your life. Video provided by Ivanhoe
Powered by NewsLook.com
Instagram's Hyperlapse Brings Pricy Stabilization To Phones

Instagram's Hyperlapse Brings Pricy Stabilization To Phones

Newsy (Aug. 26, 2014) — Instagram announced a new video stabilization app called Hyperlapse on Tuesday, bringing a high-end filming technique to peoples' iPhones. Video provided by Newsy
Powered by NewsLook.com
ICREACH: NSA Built A Google Of Americans' Info

ICREACH: NSA Built A Google Of Americans' Info

Newsy (Aug. 26, 2014) — The Intercept published an article Monday profiling what the online publication called NSA's very own Google of personal data. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins