Featured Research

from universities, journals, and other organizations

Stars don't obliterate their planets (very often)

Date:
June 6, 2013
Source:
NASA/Jet Propulsion Laboratory
Summary:
Stars have an alluring pull on planets, especially those in a class called hot Jupiters, which are gas giants that form farther from their stars before migrating inward and heating up. Now, a new study using data from NASA's Kepler Space Telescope shows that hot Jupiters, despite their close-in orbits, are not regularly consumed by their stars. Instead, the planets remain in fairly stable orbits for billions of years, until the day comes when they may ultimately get eaten.

Researchers using data from NASA's Kepler space telescope have shown that migrating planets stop their inward journey before reaching their stars, as illustrated in this artist's concept. Jupiter-like planets, called "hot Jupiters" are known to migrate from their star's frigid outer reaches in toward the star and its blistering heat. Dozens of hot Jupiters have been discovered orbiting closely to their stars, whipping around in just days.
Credit: NASA/JPL-Caltech

Stars have an alluring pull on planets, especially those in a class called hot Jupiters, which are gas giants that form farther from their stars before migrating inward and heating up.

Now, a new study using data from NASA's Kepler Space Telescope shows that hot Jupiters, despite their close-in orbits, are not regularly consumed by their stars. Instead, the planets remain in fairly stable orbits for billions of years, until the day comes when they may ultimately get eaten.

"Eventually, all hot Jupiters get closer and closer to their stars, but in this study we are showing that this process stops before the stars get too close," said Peter Plavchan of NASA's Exoplanet Science Institute at the California Institute of Technology, Pasadena, Calif. "The planets mostly stabilize once their orbits become circular, whipping around their stars every few days."

The study, published recently in the Astrophysical Journal, is the first to demonstrate how the hot Jupiter planets halt their inward march on stars. Gravitational, or tidal, forces of a star circularize and stabilize a planet's orbit; when its orbit finally become circular, the migration ceases.

"When only a few hot Jupiters were known, several models could explain the observations," said Jack Lissauer, a Kepler scientist at NASA's Ames Research Center, Moffet Field, Calif., not affiliated with the study. "But finding trends in populations of these planets shows that tides, in combination with gravitational forces by often unseen planetary and stellar companions, can bring these giant planets close to their host stars."

Hot Jupiters are giant balls of gas that resemble Jupiter in mass and composition. They don't begin life under the glare of a sun, but form in the chilly outer reaches, as Jupiter did in our solar system. Ultimately, the hot Jupiter planets head in toward their stars, a relatively rare process still poorly understood.

The new study answers questions about the end of the hot Jupiters' travels, revealing what put the brakes on their migration. Previously, there were a handful of theories explaining how this might occur. One theory proposed that the star's magnetic field prevented the planets from going any farther. When a star is young, a planet-forming disk of material surrounds it. The material falls into the star -- a process astronomers call accretion -- but when it hits the magnetic bubble around it, called the magnetosphere, the material travels up and around the bubble, landing on the star from the top and bottom. This bubble could be halting migrating planets, so the theory went.

Another theory held that the planets stopped marching forward when they hit the end of the dusty portion of the planet-forming disk.

"This theory basically said that the dust road a planet travels on ends before the planet falls all the way into the star," said co-author Chris Bilinski of the University of Arizona, Tucson. "A gap forms between the star and the inner edge of its dusty disk where the planets are thought to stop their migration."

And yet a third theory, the one the researchers found to be correct, proposed that a migrating planet stops once the star's tidal forces have completed their job of circularizing its orbit.

To test these and other scenarios, the scientists looked at 126 confirmed planets and more than 2,300 candidates. The majority of the candidates and some of the known planets were identified via NASA's Kepler mission. Kepler has found planets of all sizes and types, including rocky ones that orbit where temperatures are warm enough for liquid water.

The scientists looked at how the planets' distance from their stars varied depending on the mass of the star. It turns out that the various theories explaining what stops migrating planets differ in their predictions of how the mass of a star affects the orbit of the planet. The "tidal forces" theory predicted that the hot Jupiters of more massive stars would orbit farther out, on average.

The survey results matched the "tidal forces" theory and even showed more of a correlation between massive stars and farther-out orbits than predicted.

This may be the end of the road for the mystery of what halts migrating planets, but the journey itself still poses many questions. As gas giants voyage inward, it is thought that they sometimes kick smaller, rocky planets out of the way, and with them any chance of life evolving. Lucky for us, our Jupiter did not voyage toward the sun, and our Earth was left in peace. More studies like this one will help explain these and other secrets of planetary migration.

The technical paper is online at http://iopscience.iop.org/0004-637X/769/2/86/ .

NASA Ames manages Kepler's ground system development, mission operations and science data analysis. NASA's Jet Propulsion Laboratory in Pasadena, Calif., managed Kepler mission development. Ball Aerospace & Technologies Corp. in Boulder, Colo., developed the Kepler flight system and supports mission operations with JPL at the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder. The Space Telescope Science Institute in Baltimore archives, hosts and distributes the Kepler science data. Kepler is NASA's 10th Discovery Mission and is funded by NASA's Science Mission Directorate at the agency's headquarters in Washington.

NASA's Exoplanet Science Institute at Caltech manages time allocation on the Keck telescope for NASA. JPL manages NASA's Exoplanet Exploration program office. Caltech manages JPL for NASA.

More information about the Kepler mission is at http://www.nasa.gov/kepler .

More information about exoplanets and NASA's planet-finding program is at http://planetquest.jpl.nasa.gov .


Story Source:

The above story is based on materials provided by NASA/Jet Propulsion Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Peter Plavchan, Christopher Bilinski. Stars do not Eat Their Young Migrating Planets: Empirical Constraints on Planet Migration Halting Mechanisms. The Astrophysical Journal, 2013; 769 (2): 86 DOI: 10.1088/0004-637X/769/2/86

Cite This Page:

NASA/Jet Propulsion Laboratory. "Stars don't obliterate their planets (very often)." ScienceDaily. ScienceDaily, 6 June 2013. <www.sciencedaily.com/releases/2013/06/130606134722.htm>.
NASA/Jet Propulsion Laboratory. (2013, June 6). Stars don't obliterate their planets (very often). ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2013/06/130606134722.htm
NASA/Jet Propulsion Laboratory. "Stars don't obliterate their planets (very often)." ScienceDaily. www.sciencedaily.com/releases/2013/06/130606134722.htm (accessed October 23, 2014).

Share This



More Space & Time News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Reuters - US Online Video (Oct. 22, 2014) — Russian cosmonauts Maxim Suraev and Alexander Samokutyaev step outside the International Space Station to perform work on the exterior of the station's Russian module. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) — A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com
Latin America Launches Communications Satellite

Latin America Launches Communications Satellite

AFP (Oct. 17, 2014) — Argentina launches a home-built satellite, a first for Latin America. It will ride a French-made Ariane 5 rocket into orbit, and will provide cell phone, digital TV, Internet and data services to the lower half of South America. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
This Week @ NASA, October 17, 2014

This Week @ NASA, October 17, 2014

NASA (Oct. 17, 2014) — Power spacewalk, MAVEN’s “First Light”, Hubble finds extremely distant galaxy and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins