Featured Research

from universities, journals, and other organizations

Producing cheaper and more flexible multiple thin crystalline silicon wafers

Date:
June 12, 2013
Source:
Universitat Politècnica de Catalunya (UPC)
Summary:
Scientists have found a way to make the manufacture of crystalline silicon materials faster and more affordable.

A silicon sample after being removed from the cylinder.
Credit: Image courtesy of Universitat Politècnica de Catalunya (UPC)

A team of researchers from the Nanoengineering Research Centre (CRNE) and the Department of Electronic Engineering at the Universitat Politècnica de Catalunya · BarcelonaTech (UPCn has found a way to make the manufacture of crystalline silicon materials faster and more affordable. The results of their research have recently been published in the online version of the landmark journal Applied Physics Letters.

Related Articles


Thin crystalline silicon wafers measuring around 10 µm (micres) are costly but also very sought after in the field of microelectronics, especially in view of the growing demand for 3D circuit integration with microchips. Silicon wafers also have potential photovoltaic applications in the medium term in the conversion of sunlight to electricity and the production of more affordable, more flexible and lighter solar cells.

In recent years, techniques have been developed to obtain increasingly thinner crystalline silicon wafers from monocrystalline cylindrical ingots. Layers cut from the ingots using a multithreaded saw impregnated with abrasive material have a minimum thickness of around 150 µm. Obtaining wafers that are any thinner is more complicated, as existing methods only allow such wafers to be obtained one at a time. Furthermore, 50% of the silicon is lost in the process.

The technology developed by the research team -- David Hernández, Trifon Trifonov and Moisés Garín, led by Professor Ramon Alcubilla -- enables a large number of crystalline layers, controlled for thickness, to be produced from a single crystalline silicon wafer in just a single step. The outcome is a kind of crystalline silicon "millefeuille" produced more efficiently, more rapidly and more affordably than by existing methods.

The methodology developed by the scientists is based on making small pores in the material and applying a high temperature during the manufacturing process. Multiple separate crystalline silicon wafers are obtained by carefully controlling the pore profiles. Precise control over diameter controls both the number of layers and their thickness. The millefeuille silicon layers are then separated by exfoliation. The resulting number of silicon layers is determined by the thickness of the layers themselves and the initial thickness of the wafer. The CRnE researchers have succeeded in creating up to 10 thin wafers (5-7mm thick) from a single 300 mm thick wafer.

Reduced costs for industry

The demand for thin and ultra-thin crystalline silicon wafers responds to the application possibilities offered by 3D circuit integration of micro-electromechanical systems (MEMS) with conventional microchips and also to the latest generation of photovoltaic technology. Wafer cutting for solar cell production, for example, has been steadily improving. Thickness has been reduced (350 mm in the 1990s to 180 mm currently) while efficiency has been enhanced, resulting in reduced manufacturing costs; nonetheless, greater reductions are likely to be difficult to achieve. It has been shown that, despite lesser thickness, the wafers retain a high capacity to absorb solar energy and convert it into electricity.


Story Source:

The above story is based on materials provided by Universitat Politècnica de Catalunya (UPC). Note: Materials may be edited for content and length.


Cite This Page:

Universitat Politècnica de Catalunya (UPC). "Producing cheaper and more flexible multiple thin crystalline silicon wafers." ScienceDaily. ScienceDaily, 12 June 2013. <www.sciencedaily.com/releases/2013/06/130612093644.htm>.
Universitat Politècnica de Catalunya (UPC). (2013, June 12). Producing cheaper and more flexible multiple thin crystalline silicon wafers. ScienceDaily. Retrieved March 4, 2015 from www.sciencedaily.com/releases/2013/06/130612093644.htm
Universitat Politècnica de Catalunya (UPC). "Producing cheaper and more flexible multiple thin crystalline silicon wafers." ScienceDaily. www.sciencedaily.com/releases/2013/06/130612093644.htm (accessed March 4, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, March 4, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Wearables Now the Must-Haveables

Wearables Now the Must-Haveables

Reuters - Business Video Online (Mar. 3, 2015) — Telecom company executives are meeting in Barcelona for the Mobile World Congress, the largest annual trade show for the wireless industry. As Ivor Bennett reports from the show wearable technology is one of the big themes. Video provided by Reuters
Powered by NewsLook.com
Forensic Holodeck Creates 3D Crime Scenes

Forensic Holodeck Creates 3D Crime Scenes

Reuters - Innovations Video Online (Mar. 3, 2015) — A holodeck is no longer the preserve of TV sci-fi classic Star Trek, thanks to researchers from the Institute of Forensic Medicine Zurich, who have created what they say is the first system in the world to visualise the 3D data of forensic scans. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com
Solar Plane Passes New Test Ahead of World Tour

Solar Plane Passes New Test Ahead of World Tour

AFP (Mar. 2, 2015) — A solar-powered plane made a third successful test flight in the United Arab Emirates on Monday ahead of a planned round-the-world tour to promote alternative energy. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Electric Hydrofoiling Watercraft Delivers Eco-Friendly Thrills

Electric Hydrofoiling Watercraft Delivers Eco-Friendly Thrills

Reuters - Innovations Video Online (Mar. 2, 2015) — The Quadrofoil is a high-tech electric personal watercraft that its makers call a &apos;sports car for the water&apos;. When it hits 10 km/h, the Slovenian-engineered Quadrofoil is lifted above the water onto four wing-like hydrofoils where it &apos;flies&apos; above the surface with minimal water resistance. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins