Featured Research

from universities, journals, and other organizations

Producing cheaper and more flexible multiple thin crystalline silicon wafers

Date:
June 12, 2013
Source:
Universitat Politècnica de Catalunya (UPC)
Summary:
Scientists have found a way to make the manufacture of crystalline silicon materials faster and more affordable.

A silicon sample after being removed from the cylinder.
Credit: Image courtesy of Universitat Politècnica de Catalunya (UPC)

A team of researchers from the Nanoengineering Research Centre (CRNE) and the Department of Electronic Engineering at the Universitat Politècnica de Catalunya · BarcelonaTech (UPCn has found a way to make the manufacture of crystalline silicon materials faster and more affordable. The results of their research have recently been published in the online version of the landmark journal Applied Physics Letters.

Thin crystalline silicon wafers measuring around 10 µm (micres) are costly but also very sought after in the field of microelectronics, especially in view of the growing demand for 3D circuit integration with microchips. Silicon wafers also have potential photovoltaic applications in the medium term in the conversion of sunlight to electricity and the production of more affordable, more flexible and lighter solar cells.

In recent years, techniques have been developed to obtain increasingly thinner crystalline silicon wafers from monocrystalline cylindrical ingots. Layers cut from the ingots using a multithreaded saw impregnated with abrasive material have a minimum thickness of around 150 µm. Obtaining wafers that are any thinner is more complicated, as existing methods only allow such wafers to be obtained one at a time. Furthermore, 50% of the silicon is lost in the process.

The technology developed by the research team -- David Hernández, Trifon Trifonov and Moisés Garín, led by Professor Ramon Alcubilla -- enables a large number of crystalline layers, controlled for thickness, to be produced from a single crystalline silicon wafer in just a single step. The outcome is a kind of crystalline silicon "millefeuille" produced more efficiently, more rapidly and more affordably than by existing methods.

The methodology developed by the scientists is based on making small pores in the material and applying a high temperature during the manufacturing process. Multiple separate crystalline silicon wafers are obtained by carefully controlling the pore profiles. Precise control over diameter controls both the number of layers and their thickness. The millefeuille silicon layers are then separated by exfoliation. The resulting number of silicon layers is determined by the thickness of the layers themselves and the initial thickness of the wafer. The CRnE researchers have succeeded in creating up to 10 thin wafers (5-7mm thick) from a single 300 mm thick wafer.

Reduced costs for industry

The demand for thin and ultra-thin crystalline silicon wafers responds to the application possibilities offered by 3D circuit integration of micro-electromechanical systems (MEMS) with conventional microchips and also to the latest generation of photovoltaic technology. Wafer cutting for solar cell production, for example, has been steadily improving. Thickness has been reduced (350 mm in the 1990s to 180 mm currently) while efficiency has been enhanced, resulting in reduced manufacturing costs; nonetheless, greater reductions are likely to be difficult to achieve. It has been shown that, despite lesser thickness, the wafers retain a high capacity to absorb solar energy and convert it into electricity.


Story Source:

The above story is based on materials provided by Universitat Politècnica de Catalunya (UPC). Note: Materials may be edited for content and length.


Cite This Page:

Universitat Politècnica de Catalunya (UPC). "Producing cheaper and more flexible multiple thin crystalline silicon wafers." ScienceDaily. ScienceDaily, 12 June 2013. <www.sciencedaily.com/releases/2013/06/130612093644.htm>.
Universitat Politècnica de Catalunya (UPC). (2013, June 12). Producing cheaper and more flexible multiple thin crystalline silicon wafers. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2013/06/130612093644.htm
Universitat Politècnica de Catalunya (UPC). "Producing cheaper and more flexible multiple thin crystalline silicon wafers." ScienceDaily. www.sciencedaily.com/releases/2013/06/130612093644.htm (accessed September 1, 2014).

Share This




More Matter & Energy News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) — Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) — Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) — Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) — An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins