Featured Research

from universities, journals, and other organizations

Research of essential molecule reveals important targets in diabetes and obesity

Date:
June 19, 2013
Source:
Wayne State University Division of Research
Summary:
Medical researchers have made breakthrough advancements on a molecule that may provide more answers in understanding the precise molecular mechanisms by which insulin regulates glucose uptake in fat and muscle cells.

Insulin is the most potent physiological anabolic agent for tissue-building and energy storage, promoting the storage and synthesis of lipids, protein and carbohydrates, and inhibiting their breakdown and release into the circulatory system. It also plays a major role in stimulating glucose entry into muscle tissue, where the glucose is metabolized and removed from the blood following meals. But gaps exist in understanding the precise molecular mechanisms by which insulin regulates glucose uptake in fat and muscle cells.

Related Articles


A research team led by Assia Shisheva, Ph.D., professor of physiology in Wayne State University's School of Medicine, has made breakthrough advancements on a molecule that may provide more answers to this mystery.

The conserved phospholipid enzyme, PIKfyve, was discovered in Shisheva's lab in 1999. Based on studies in cultured cells, the lab has implicated PIKfyve in the insulin-regulated glucose transport activation, which led to the development of a unique mouse model with PIKfyve ablation, or removal, in muscle (MPlfKO), the tissue responsible for the majority of postprandial glucose disposal.

In Shisheva's recent paper, "Muscle-specific PIKfyve gene distribution causes glucose intolerance, insulin resistance, adiposity and hyperinsulinemia but not muscle fiber-type switching," published online in the American Journal of Physiology -- Endocrinology and Metabolism, Shisheva and her research team characterize whether this new model exhibits metabolic defects.

"Our team found a striking metabolic phenotype in the MPIfKO mice consisting of glucose intolerance and insulin resistance at an early age and on a normal diet," said Shisheva, a resident of Royal Oak. "We also revealed that PIKfyve is essential for normal insulin signaling to GLUT4/glucose transport in muscle and provided the first in vivo evidence for the central role of PIKfyve in the mechanisms regulating healthy blood glucose levels, or glucose homeostasis."

In addition, the research team found that these metabolic disturbances were followed by increased animal fat (adiposity) and elevated levels of insulin (hyperinsulinemia), but not abnormal amounts of lipids or cholesterol in the blood (dyslipidemia).

"The combined phenotype manifested by the MPlfKO mouse closely recapitulates the cluster of typical features in human prediabetes including systemic glucose intolerance and insulin resistance, hyperinsulinemia and increased visceral obesity without dyslipidemia," said Shisheva.

"Therefore, our mouse model, in addition to providing novel mechanisms of insulin resistance, represents a valuable tool for exploring new preclinical strategies to improve treatments in individuals with prediabetes."

Funding for this research was provided by the National Institute of Diabetes, Digestive and Kidney Disease of the National Institutes of Health (R01 DK058058), Wayne State University's Office of the Vice President for Research and School of Medicine, and the American Diabetes Association. In-house instrumentation available at the Institutional Center for Integrative Metabolic and Endocrine Research ensured a more complete mouse metabolic phenotyping.


Story Source:

The above story is based on materials provided by Wayne State University Division of Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. O. C. Ikonomov, D. Sbrissa, K. Delvecchio, H.-Z. Feng, G. D. Cartee, J.-P. Jin, A. Shisheva. Muscle-specific Pikfyve gene disruption causes glucose intolerance, insulin resistance, adiposity and hyperinsulinemia but not muscle fiber-type switching. AJP: Endocrinology and Metabolism, 2013; DOI: 10.1152/ajpendo.00030.2013

Cite This Page:

Wayne State University Division of Research. "Research of essential molecule reveals important targets in diabetes and obesity." ScienceDaily. ScienceDaily, 19 June 2013. <www.sciencedaily.com/releases/2013/06/130619101022.htm>.
Wayne State University Division of Research. (2013, June 19). Research of essential molecule reveals important targets in diabetes and obesity. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2013/06/130619101022.htm
Wayne State University Division of Research. "Research of essential molecule reveals important targets in diabetes and obesity." ScienceDaily. www.sciencedaily.com/releases/2013/06/130619101022.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins