Featured Research

from universities, journals, and other organizations

Transistor made from just one molecular monolayer made to work on computer chip

Date:
June 20, 2013
Source:
University of Copenhagen
Summary:
Electronic components built from single molecules using chemical synthesis could pave the way for smaller, faster and more green and sustainable electronic devices. Now for the first time, a transistor made from just one molecular monolayer has been made to work where it really counts. On a computer chip.

Associate Professor Kasper Nørgaard with the graphite that starts it all for graphene.
Credit: Image courtesy of University of Copenhagen

Electronic components built from single molecules using chemical synthesis could pave the way for smaller, faster and more green and sustainable electronic devices. Now for the first time, a transistor made from just one molecular monolayer has been made to work where it really counts. On a computer chip.

The molecular integrated circuit was created by a group of chemists and physicists from the Department of Chemistry Nano-Science Center at the University of Copenhagen and Chinese Academy of Sciences, Beijing. Their discovery has just been published online in the periodical Advanced Materials. The breakthrough was made possible through an innovative use of the two dimensional carbon material graphene.

First step towards integrated molecular circuit

Kasper Nørgaard is an associate professor in chemistry at the University of Copenhagen. He believes that the first advantage of the newly developed graphene chip will be to ease the testing of coming molecular electronic components. But he is also confident, that it represents a first step towards proper integrated molecular circuits.

"Graphene has some very interesting properties, which cannot be matched by any other material.

What we have shown for the first time is that it's possible to integrate a functional component on a graphene chip. I honestly feel this is front page news," says Nørgaard.

See through sandwich central to function

The molecular computer chip is a sandwich built with one layer of gold, one of molecular components and one of the extremely thin carbon material graphene. The molecular transistor in the sandwich is switched on and of using a light impulse so one of the peculiar properties of graphene is highly useful. Even though graphene is made of carbon, it's almost completely translucent.

Environmentally important. Strategically vital

The hunt for transistors, wires, contacts and other electronic components made from single molecules has had researchers working night and day. Unlike traditional components they are expected to require no heavy metals and rare earth elements. So they should be cheaper as well as less harmful to earth, water and animals. Unfortunately it has been fiendishly difficult to test how well these functional molecules work. Until now.

The luck of the draw

Previously the testing of the microscopic components had researchers resort to a method best compared to a lottery. In order to check whether or not a newly minted molecule would conduct or break a current, they had to practically dump a beakerfull of molecules between two live wires, hoping that at least one molecule had landed so that it closed the circuit.

Lottery method supplanted by precision placement

Using the new graphene chip researchers can now place their molecules with great precision. This makes it faster and easier to test the functionality of molecular wires, contacts and diodes so that chemists will know in no time whether they need to get back to their beakers to develop new functional molecules, explains Nørgaard.

"We've made a design, that'll hold many different types of molecule" he says and goes on: "Because the graphene scaffold is closer to real chipdesign it does make it easier to test components, but of course it's also a step on the road to making a real integrated circuit using molecular components. And we must not lose sight of the fact that molecular components do have to end up in an integrated circuit, if they are going to be any use at all in real life."

The work has been supported by Danish Chinese Center for Molecular Nano-Electronics and financed by the Danish National Research Foundation, the European Union 7th framework for research (FP7) and by The Lundbeck Foundation.


Story Source:

The above story is based on materials provided by University of Copenhagen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tao Li, Martyn Jevric, Jonas R. Hauptmann, Rune Hviid, Zhongming Wei, Rui Wang, Nini E. A. Reeler, Erling Thyrhaug, Søren Petersen, Jakob A. S. Meyer, Nicolas Bovet, Tom Vosch, Jesper Nygård, Xiaohui Qiu, Wenping Hu, Yunqi Liu, Gemma C. Solomon, Henrik G. Kjaergaard, Thomas Bjørnholm, Mogens Brøndsted Nielsen, Bo W. Laursen, Kasper Nørgaard. Ultrathin Reduced Graphene Oxide Films as Transparent Top-Contacts for Light Switchable Solid-State Molecular Junctions. Advanced Materials, 2013; DOI: 10.1002/adma.201300607

Cite This Page:

University of Copenhagen. "Transistor made from just one molecular monolayer made to work on computer chip." ScienceDaily. ScienceDaily, 20 June 2013. <www.sciencedaily.com/releases/2013/06/130620071525.htm>.
University of Copenhagen. (2013, June 20). Transistor made from just one molecular monolayer made to work on computer chip. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2013/06/130620071525.htm
University of Copenhagen. "Transistor made from just one molecular monolayer made to work on computer chip." ScienceDaily. www.sciencedaily.com/releases/2013/06/130620071525.htm (accessed October 1, 2014).

Share This



More Computers & Math News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microsoft Goes For Familiarity Over Novelty In Windows 10

Microsoft Goes For Familiarity Over Novelty In Windows 10

Newsy (Sep. 30, 2014) — At a special event in San Francisco, Microsoft introduced its latest operating system, Windows 10, which combines key features from earlier versions. Video provided by Newsy
Powered by NewsLook.com
French Apple Fans Discover the Apple Watch

French Apple Fans Discover the Apple Watch

AFP (Sep. 30, 2014) — Apple fans in France discover the latest toy, the Apple Watch. The watch comes in two sizes and an array of interchangeable, fashionable wrist straps. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Apple Releases 'Shellshock' Fix Despite Few Affected Users

Apple Releases 'Shellshock' Fix Despite Few Affected Users

Newsy (Sep. 29, 2014) — Apple released a security fix for the "Shellshock" vulnerability Monday, though it says only "advanced UNIX users" of OS X need it. Video provided by Newsy
Powered by NewsLook.com
Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) — More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins