Featured Research

from universities, journals, and other organizations

No more leakage of explosive electrolytes in batteries

Date:
June 27, 2013
Source:
Ulsan National Institute of Science and Technology (UNIST)
Summary:
A research team from South Korea has found a new physical organogel electrolyte with two unique characteristics: an irreversible thermal gelation and a high value of the Li+ transference number.

Young-Soo Kim, professor Hyun-Kon Song, and professor Noejung Park, the research team at UNIST.
Credit: UNIST

A research team at Ulsan National Institute of Science and Technology (UNIST), S. Korea, found a new physical organogel electrolyte with two unique characteristics: an irreversible thermal gelation and a high value of the Li+ transference number.

A Recent fire on a Boeing 787 on the ground in Boston, US, was caused by a battery failure, it resulted in the release of flammable electrolytes, heat damage and smoke. If they had used a safer electrolyte, the risk would have been reduced.

Electrolytes are essential components of supercapacitors, batteries and fuel cells. The Most widely used electrolyte is a liquid type since its overall ionic conductivity and value of transference numbers are better than solid-type electrolytes. However, safety concerns caused by its leakage and explosive nature, caused an extensive call for the research on the development of solid-type electrolyte.

The development of solid-type electrolytes, safe from explosion caused by high temperature and overcharge, is urgently needed to replace the liquid electrolytes. The solid electrolyte enables batteries to be safer as well as the use of higher energy electrode materials.

The most important parameter of electrolytes used in electrochemical cells is ionic conductivity. The use of solid-state electrolytes has been limited due to low ionic conductivity caused by their immobile matrix regardless of their own merits such as no leak, non-volatility, mechanical strength and processing flexibility.

Another parameter we should consider is transference of the number of ions. Electrolytes are characterized by their ionic conductivity, It is desirable that overall ionic results from the dominant contribution of the ions of interest. However high values of the cationic transference number achieved by solid or gel electrolytes have resulted in low ionic conductivity leading to inferior cell performances.

The research team of Profs. Hyun-Kon Song and Noejung Park of UNIST, presented an organogel polymer electrolyte characterized by a high liquid-electrolyte-level ionic conductivity with high a cationic transference number for Lithium ion batteries (LIB).

The research team acquired the two required properties simultaneously in polymer gel electrolytes: a liquid-electrolyte-level conductivity with a high transference number. Cyanoethly polyvinyle alchohol (PVA-CN) played a key role in the highly conductive gel electrolyte while another cyano resin, Cyanoethlyle pullulan (Pullulan-CN), was used as a control representing a liquid electrolyte containing cyano chains. The PVA-CN-containing liquid electrolyte was thermally gelated even without any chemical crosslinkers or polymerizations initiators.

Hyun-Kon Song and Noejung Park, both, professors of the Interdisciplinary School of Green Energy, UNIST, South Korea, led the effort. Fellow authors include: Young-Soo Kim, Yoon-Gyo Cho, and Dori Odkhuu from UNIST.

"We believe that this new type of electrolyte gel provides us with design flexibility in devices as well as enhanced safety and stability to electro-chemical devices," said Prof. Song.

This research was funded by the World Class University (WCU) programs through the National Research Foundation of Korea (NRF) and published on May 29, 2013 in the (Nature Publishing Group) Scientific Reports


Story Source:

The above story is based on materials provided by Ulsan National Institute of Science and Technology (UNIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Young-Soo Kim, Yoon-Gyo Cho, Dorj Odkhuu, Noejung Park, Hyun-Kon Song. A physical organogel electrolyte: characterized by in situ thermo-irreversible gelation and single-ion-predominent conduction. Scientific Reports, 2013; 3 DOI: 10.1038/srep01917

Cite This Page:

Ulsan National Institute of Science and Technology (UNIST). "No more leakage of explosive electrolytes in batteries." ScienceDaily. ScienceDaily, 27 June 2013. <www.sciencedaily.com/releases/2013/06/130627102627.htm>.
Ulsan National Institute of Science and Technology (UNIST). (2013, June 27). No more leakage of explosive electrolytes in batteries. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2013/06/130627102627.htm
Ulsan National Institute of Science and Technology (UNIST). "No more leakage of explosive electrolytes in batteries." ScienceDaily. www.sciencedaily.com/releases/2013/06/130627102627.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins