Featured Research

from universities, journals, and other organizations

Detection of single photons via quantum entanglement

Date:
July 8, 2013
Source:
University of Innsbruck
Summary:
Almost 200 years ago, Bavarian physicist Joseph von Fraunhofer discovered dark lines in the sun's spectrum. It was later discovered that these spectral lines can be used to infer the chemical composition and temperature of the sun’s atmosphere. Today we are able to gain information about diverse objects through light measurements in a similar way. Because often very little light needs to be detected for this, physicists are looking for ever more sensitive spectroscopy methods. In extreme cases, also single particles of light (photons) need to be measured reliably, which is technically challenging.

As a 'quantum pendulum' the ions swing in both directions at the same time.
Credit: IQOQI/Knabl

Almost 200 years ago, Bavarian physicist Joseph von Fraunhofer discovered dark lines in the sun's spectrum. It was later discovered that these spectral lines can be used to infer the chemical composition and temperature of the sun's atmosphere. Today we are able to gain information about diverse objects through light measurements in a similar way. Because often very little light needs to be detected for this, physicists are looking for ever more sensitive spectroscopy methods. In extreme cases, also single particles of light (photons) need to be measured reliably, which is technically challenging.

Thus, physicists at the Institute for Quantum Optics and Quantum Information (IQOQI) at the Austrian Academy of Sciences and the Institute for Experimental Physics of the University of Innsbruck take a detour via the technique of quantum logic spectroscopy. It was developed some years ago by the group of Nobel laureate David Wineland to build extremely precise atomic clocks. This is one of the first practical applications of quantum information processing and, in the next few years, may lead to a redefinition of the second in the international system of units.

Measurement via entanglement

Christian Roos' and Cornelius Hempel's team of physicists in Innsbruck isolated single ions in an ion trap to study them under controlled conditions. "We do not try to detect the photon that is emitted or absorbed by an ion, but rather the momentum kick the ion receives upon absorption or emission," explains Cornelius Hempel. "While this effect is extremely small, we can detect it by means of quantum physics." The physicists use an additional 'logic' ion, on which the measurement is performed. "This calcium ion (40Ca+) can be controlled very well in the experiment," says Hempel. As spectroscopy ion the researchers use another isotope of calcium (44Ca+). In the experiment a laser pulse excites the particles and entangles the electronic state of the logic ion with the vibration of the particles. "In this configuration, also called Schrφdinger cat state, the ions swing like a classical pendulum in a trap. But as a 'quantum pendulum' they swing in both directions at the same time," describes Hempel the central part of the experiment. "We then excite the ion we want to investigate by applying different laser frequencies. At a certain frequency the ion emits a single photon and receives a minimal momentum kick, which causes the vibrational components to be slightly displaced. This can be observed through the electronic state of the logic ion. Combined with this information, the frequency of the laser then allows us to gain information about the internal state of the spectroscopy ion." In the current experiment the scientists detected single photons with a probability of 12 %. "We, thus, prove that this technique works in principal. With a technically optimized set-up we will be able to considerably increase the sensitivity," say Roos and Hempel confidently.

Universal application

"By using the exotic concept of quantum mechanical entanglement we are able to gain practical knowledge about single particles," says Christian Roos excitedly. "Since our method of measurement does not depend that much on the wave length of the detected photon, it may be used for various purposes," adds Cornelius Hempel. For example, energy levels of different atoms and molecules could be investigated by using this technique. Because it is difficult to control molecules in an experiment, this method is an enormous progress for studying more complex structures.

This research, carried out at the Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences and at the Institute for Experimental Physics at Innsbruck University, was supported by the European Union.


Story Source:

The above story is based on materials provided by University of Innsbruck. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. Hempel, B. P. Lanyon, P. Jurcevic, R. Gerritsma, R. Blatt, C. F. Roos. Entanglement-enhanced detection of single-photon scattering events. Nature Photonics, 2013; DOI: 10.1038/nphoton.2013.172

Cite This Page:

University of Innsbruck. "Detection of single photons via quantum entanglement." ScienceDaily. ScienceDaily, 8 July 2013. <www.sciencedaily.com/releases/2013/07/130708102914.htm>.
University of Innsbruck. (2013, July 8). Detection of single photons via quantum entanglement. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/07/130708102914.htm
University of Innsbruck. "Detection of single photons via quantum entanglement." ScienceDaily. www.sciencedaily.com/releases/2013/07/130708102914.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) — 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) — Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Car Market on the Rebound?

Europe's Car Market on the Rebound?

Reuters - Business Video Online (July 23, 2014) — Daimler kicks off a round of second-quarter earnings results from Europe's top carmakers with a healthy set of numbers - prompting hopes that stronger sales in Europe will counter weakness in emerging markets. Hayley Platt reports. Video provided by Reuters
Powered by NewsLook.com
9/11 Commission Members Warn of Terror "fatigue" Among American Public

9/11 Commission Members Warn of Terror "fatigue" Among American Public

Reuters - US Online Video (July 22, 2014) — Ten years after releasing its initial report, members of the 9/11 Commission warn of the "waning sense of urgency" in combating terrorists attacks. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins