Featured Research

from universities, journals, and other organizations

New findings on makeup of universe may spawn research

Date:
July 16, 2013
Source:
University of Alabama Huntsville
Summary:
New areas of extragalactic study may emerge from research by astrophysicists using data from the Chandra Space Telescope to conclude that baryons making up all visible matter – once thought to be missing from clusters – are present in the expected ratios in large, luminous clusters.

New areas of extragalactic study may emerge from research by University of Alabama in Huntsville (UAH) astrophysicists using data from the Chandra Space Telescope to conclude that baryons making up all visible matter -- once thought to be missing from clusters -- are present in the expected ratios in large, luminous clusters.

The new research studied very large galaxy clusters and concludes that they indeed contain the proportion of visible matter that is being worked out as part of the Big Bang Theory. The paper was authored by graduate student David Landry with Dr. Massimiliano (Max) Bonamente, UAH associate professor of physics, Paul Giles and Ben Maughan of the University of Bristol, U.K., and Marshall Joy of NASA Marshall Space Flight Center. Dr. David Landry is now a scientist at Corvid Technologies in Huntsville, Ala.

The work may prompt new efforts to explain past research findings that some clusters have a deficit in baryons from what is expected. The universe is composed of about 75 percent dark energy and 25 percent matter. Of the portion that is matter, about 16 percent is the familiar visible matter that is all around us and the remaining 84 percent is dark matter.

"We call it dark matter because we don't know what it is made of, but it is made of some type of particles and it doesn't seem to emit visible energy," said Dr. Bonamente. Together dark energy, dark matter and ordinary baryonic matter form a pie chart of the mass of the universe, where everything has to add up to 100 percent. "We don't know what dark matter is," he said, "but we have the means to put the pie together."

While dark energy has a repulsive energy, dark matter and baryonic matter have an attractive force where "everything likes to clump together" to form stars and planets and galaxies, said Dr. Bonamente. Using x-rays, astrophysicists discovered that there is a diffuse hot plasma gas that fills the space between galaxies.

"Basically, the space between galaxies is filled with this hot plasma that is 100 million degrees in temperature," said Dr. Bonamente. Because the gas is so diffuse, it has very low heat capacity. "It is like if I posed this question to you: Which would you rather put your finger in, a boiling cup of water or a room that had been heated to 212 degrees Fahrenheit? You choose the room because the temperature inside it is more diffused than it would be in the concentrated cup of water, and so you can tolerate it."

So why doesn't the hot gas simply escape? "It is bound to the cluster by gravity," said Dr. Bonamente. "With hot gas, you can do two things. You can measure the regular matter, which is the baryon content. And two, since the hot gas is bound, you can measure how much matter it would take to hold the gas and therefore you can tell how much dark matter there is. "All of a sudden, there is something really wonderful about the hot gases," he said. "You can have your cake and eat it, too."

Theoretically, the universe should contain the same proportions of visible and dark matter regardless of where it is sampled. Using cosmic microwave radiation readings, astrophysicists have been able to do a type of forensics of the universe's past, and those finding have shown the proportions that were present at the Big Bang or shortly thereafter.

"Because it started in the Big Bang, that ratio should persist," Dr. Bonamente said. "It is like if I go to the ocean with a scoop. The scoop of water I get should have the same concentration of salt as the rest of the ocean, no matter where I get it."

But past research had indicated that some clusters were short on the expected percentage of baryons, posing the question of where they were.

"Since recently, people believed that clusters had less than 16 percent of baryons, so there were missing baryons," Dr. Bonamente said. "We said no, they are there. So, how did we find clusters with this correct ratio? We studied the most luminous ones, because they have more mass and retain more baryons."

The findings could open new areas of investigation into why the deficits in baryons were recorded in past research. Dr. Bonamente suggests one theory. "We know that some smaller clusters do have lower concentrations of baryons than the larger ones," he said. Perhaps because of weaker gravitational forces, the hot gases escaped in similar fashion as planets that have no atmosphere. "Maybe the gas can be bound but maybe a little bit can fly off if there is just not quite enough gravity."

For further studies on smaller clusters, Dr. Bonamente looks forward to the arrival of new faculty member Dr. Ming Sun, formerly at the University of Virginia, who is an expert on groups having less than 16 percent baryons.

"I am excited that Ming has decided to join our research group," says Dr. Bonamente."With him on board, UAH is poised to continue making discoveries on the makeup of the universe, and that is the most exciting question to answer that I can think of."


Story Source:

The above story is based on materials provided by University of Alabama Huntsville. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. Landry, M. Bonamente, P. Giles, B. Maughan, M. Joy, S. Murray. Chandra measurements of a complete sample of X-ray luminous galaxy clusters: the gas mass fraction. Monthly Notices of the Royal Astronomical Society, 2013; DOI: 10.1093/mnras/stt901

Cite This Page:

University of Alabama Huntsville. "New findings on makeup of universe may spawn research." ScienceDaily. ScienceDaily, 16 July 2013. <www.sciencedaily.com/releases/2013/07/130716092656.htm>.
University of Alabama Huntsville. (2013, July 16). New findings on makeup of universe may spawn research. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2013/07/130716092656.htm
University of Alabama Huntsville. "New findings on makeup of universe may spawn research." ScienceDaily. www.sciencedaily.com/releases/2013/07/130716092656.htm (accessed April 21, 2014).

Share This



More Space & Time News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

SpaceX's Dragon Spacecraft Captured by International Space Station

SpaceX's Dragon Spacecraft Captured by International Space Station

Reuters - US Online Video (Apr. 20, 2014) SpaceX's unmanned Dragon spacecraft makes a scheduled Easter Sunday rendezvous with the International Space Station. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Raw: Easter Morning Delivery for Space Station

Raw: Easter Morning Delivery for Space Station

AP (Apr. 20, 2014) Space station astronauts got a special Easter treat: a cargo ship full of supplies. The SpaceX company's cargo ship, Dragon, spent two days chasing the International Space Station following its launch from Cape Canaveral. (April 20) Video provided by AP
Powered by NewsLook.com
A Hoax? Cosmetics Company Wants To Brighten The Moon

A Hoax? Cosmetics Company Wants To Brighten The Moon

Newsy (Apr. 19, 2014) FOREO, a Swedish cosmetics company, says it wants to brighten the moon to lower electricity costs. Video provided by Newsy
Powered by NewsLook.com
Raw: Space X Launches to Space Station

Raw: Space X Launches to Space Station

AP (Apr. 18, 2014) On it's second attempt this week, The Space X company launched Friday from Cape Canaveral to ferry supplies to the International Space Station. (April 18) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins