Featured Research

from universities, journals, and other organizations

New model to improve vehicle-to-vehicle communication for 'intelligent transportation'

Date:
July 16, 2013
Source:
North Carolina State University
Summary:
Imagine a transportation system where vehicles communicate directly with each other in real time, giving drivers warnings about traffic delays, allowing a single driver to control multiple vehicles or routing vehicles around hazardous road conditions. Those are all aspects of the "intelligent transportation" concept. And researchers have developed a model to improve the clarity of the vehicle-to-vehicle transmissions needed to make that concept a reality.

Imagine a transportation system where vehicles communicate directly with each other in real time, giving drivers warnings about traffic delays, allowing a single driver to control multiple vehicles or routing vehicles around hazardous road conditions. Those are all aspects of the "intelligent transportation" concept. And researchers have developed a model to improve the clarity of the vehicle-to-vehicle (V2V) transmissions needed to make that concept a reality.

"The model helps us understand how the V2V signals are distorted," says Dr. Dan Stancil, head of North Carolina State University's Department of Electrical and Computer Engineering and co-author of a paper on the work. "And understanding how the signal may be distorted allows you to design a signal that is less likely to become distorted in the first place.

"While there are smartphone apps that can tell you about traffic jams, there is a time lag between when the traffic jam begins and when the driver is notified," Stancil says. "One advantage of this sort of direct communication between vehicles is that it has very little time delay, and could warn you to apply the brakes in response to an event only hundreds of yards away."

V2V communication relies on transmitting data via radio frequencies in a specific band. But the transmission is complicated by the fact that both the transmitter and the receiver are in motion -- and by the reflected radio waves, or radio echoes, that bounce off of passing objects. These variables can distort the signal, causing errors in the data.

The new model accounts for the motion of the transmitter and receiver, but previous models have done that as well. Previous models also addressed the problem of radio echoes in V2V communication by incorporating a uniform distribution of objects surrounding each vehicle. However, this approach does not accurately capture many real-world V2V communication scenarios. Other models use realistic distributions of objects, but require powerful computers to painstakingly calculate the contributions from each object.

The researchers recognized that most roads are lined with objects that run parallel to the road itself, such as trees, gas stations or parked cars. This means the objects that can reflect radio waves are not uniformly distributed in all directions. By accounting for this parallel distribution of objects, the researchers were able to create a model that more accurately describes how radio signals will be affected by their surroundings. That information can be used to adjust the transmission signal to improve the clarity of the data transmission. In addition, the model is relatively simple to calculate and does not require a powerful computer.

"We want to continue fine-tuning the model, but the next step is to incorporate this information into V2V technology to improve the reliability of V2V signals," Stancil says.

The paper, "A Roadside Scattering Model for the Vehicle-to-Vehicle Communication Channel," is published online in IEEE Journal on Selected Areas in Communication. Lead author of the study is Dr. Lin Cheng of Trinity College in Connecticut. The paper was co-authored by Dr. Fan Bai of the General Motors Research Center. The research was supported by General Motors.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lin Cheng, Daniel D. Stancil, Fan Bai. A Roadside Scattering Model for the Vehicle-to-Vehicle Communication Channel. IEEE Journal on Selected Areas in Communications, 2013; DOI: 10.1109/JSAC.2013.SUP.0513040

Cite This Page:

North Carolina State University. "New model to improve vehicle-to-vehicle communication for 'intelligent transportation'." ScienceDaily. ScienceDaily, 16 July 2013. <www.sciencedaily.com/releases/2013/07/130716120024.htm>.
North Carolina State University. (2013, July 16). New model to improve vehicle-to-vehicle communication for 'intelligent transportation'. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2013/07/130716120024.htm
North Carolina State University. "New model to improve vehicle-to-vehicle communication for 'intelligent transportation'." ScienceDaily. www.sciencedaily.com/releases/2013/07/130716120024.htm (accessed October 1, 2014).

Share This



More Computers & Math News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microsoft Goes For Familiarity Over Novelty In Windows 10

Microsoft Goes For Familiarity Over Novelty In Windows 10

Newsy (Sep. 30, 2014) At a special event in San Francisco, Microsoft introduced its latest operating system, Windows 10, which combines key features from earlier versions. Video provided by Newsy
Powered by NewsLook.com
French Apple Fans Discover the Apple Watch

French Apple Fans Discover the Apple Watch

AFP (Sep. 30, 2014) Apple fans in France discover the latest toy, the Apple Watch. The watch comes in two sizes and an array of interchangeable, fashionable wrist straps. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Apple Releases 'Shellshock' Fix Despite Few Affected Users

Apple Releases 'Shellshock' Fix Despite Few Affected Users

Newsy (Sep. 29, 2014) Apple released a security fix for the "Shellshock" vulnerability Monday, though it says only "advanced UNIX users" of OS X need it. Video provided by Newsy
Powered by NewsLook.com
Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins