Featured Research

from universities, journals, and other organizations

New model to improve vehicle-to-vehicle communication for 'intelligent transportation'

Date:
July 16, 2013
Source:
North Carolina State University
Summary:
Imagine a transportation system where vehicles communicate directly with each other in real time, giving drivers warnings about traffic delays, allowing a single driver to control multiple vehicles or routing vehicles around hazardous road conditions. Those are all aspects of the "intelligent transportation" concept. And researchers have developed a model to improve the clarity of the vehicle-to-vehicle transmissions needed to make that concept a reality.

Imagine a transportation system where vehicles communicate directly with each other in real time, giving drivers warnings about traffic delays, allowing a single driver to control multiple vehicles or routing vehicles around hazardous road conditions. Those are all aspects of the "intelligent transportation" concept. And researchers have developed a model to improve the clarity of the vehicle-to-vehicle (V2V) transmissions needed to make that concept a reality.

"The model helps us understand how the V2V signals are distorted," says Dr. Dan Stancil, head of North Carolina State University's Department of Electrical and Computer Engineering and co-author of a paper on the work. "And understanding how the signal may be distorted allows you to design a signal that is less likely to become distorted in the first place.

"While there are smartphone apps that can tell you about traffic jams, there is a time lag between when the traffic jam begins and when the driver is notified," Stancil says. "One advantage of this sort of direct communication between vehicles is that it has very little time delay, and could warn you to apply the brakes in response to an event only hundreds of yards away."

V2V communication relies on transmitting data via radio frequencies in a specific band. But the transmission is complicated by the fact that both the transmitter and the receiver are in motion -- and by the reflected radio waves, or radio echoes, that bounce off of passing objects. These variables can distort the signal, causing errors in the data.

The new model accounts for the motion of the transmitter and receiver, but previous models have done that as well. Previous models also addressed the problem of radio echoes in V2V communication by incorporating a uniform distribution of objects surrounding each vehicle. However, this approach does not accurately capture many real-world V2V communication scenarios. Other models use realistic distributions of objects, but require powerful computers to painstakingly calculate the contributions from each object.

The researchers recognized that most roads are lined with objects that run parallel to the road itself, such as trees, gas stations or parked cars. This means the objects that can reflect radio waves are not uniformly distributed in all directions. By accounting for this parallel distribution of objects, the researchers were able to create a model that more accurately describes how radio signals will be affected by their surroundings. That information can be used to adjust the transmission signal to improve the clarity of the data transmission. In addition, the model is relatively simple to calculate and does not require a powerful computer.

"We want to continue fine-tuning the model, but the next step is to incorporate this information into V2V technology to improve the reliability of V2V signals," Stancil says.

The paper, "A Roadside Scattering Model for the Vehicle-to-Vehicle Communication Channel," is published online in IEEE Journal on Selected Areas in Communication. Lead author of the study is Dr. Lin Cheng of Trinity College in Connecticut. The paper was co-authored by Dr. Fan Bai of the General Motors Research Center. The research was supported by General Motors.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lin Cheng, Daniel D. Stancil, Fan Bai. A Roadside Scattering Model for the Vehicle-to-Vehicle Communication Channel. IEEE Journal on Selected Areas in Communications, 2013; DOI: 10.1109/JSAC.2013.SUP.0513040

Cite This Page:

North Carolina State University. "New model to improve vehicle-to-vehicle communication for 'intelligent transportation'." ScienceDaily. ScienceDaily, 16 July 2013. <www.sciencedaily.com/releases/2013/07/130716120024.htm>.
North Carolina State University. (2013, July 16). New model to improve vehicle-to-vehicle communication for 'intelligent transportation'. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2013/07/130716120024.htm
North Carolina State University. "New model to improve vehicle-to-vehicle communication for 'intelligent transportation'." ScienceDaily. www.sciencedaily.com/releases/2013/07/130716120024.htm (accessed July 25, 2014).

Share This




More Computers & Math News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bill Gates: Health, Agriculture Key to Africa's Development

Bill Gates: Health, Agriculture Key to Africa's Development

AFP (July 24, 2014) Health and agriculture development are key if African countries are to overcome poverty and grow, US software billionaire Bill Gates said Thursday, as he received an honourary degree in Ethiopia. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Facebook Earnings Put Smile on Investors Faces

Facebook Earnings Put Smile on Investors Faces

Reuters - Business Video Online (July 23, 2014) Facebook earnings beat forecasts- with revenue climbing 61 percent. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins