Science News

... from universities, journals, and other research organizations

Ability to Learn New Words Based On Efficient Communication Between Brain Areas That Control Movement and Hearing

July 22, 2013 — For the first time scientists have identified how a pathway in the brain which is unique to humans allows us to learn new words.


Share This:

The average adult's vocabulary consists of about 30,000 words. This ability seems unique to humans as even the species closest to us -- chimps -- manage to learn no more than 100.

It has long been believed that language learning depends on the integration of hearing and repeating words but the neural mechanisms behind learning new words remained unclear. Previous studies have shown that this may be related to a pathway in the brain only found in humans and that humans can learn only words that they can articulate.

Now researchers from King's College London Institute of Psychiatry, in collaboration with Bellvitge Biomedical Research Institute (IDIBELL) and the University of Barcelona, have mapped the neural pathways involved in word learning among humans. They found that the arcuate fasciculus, a collection of nerve fibres connecting auditory regions at the temporal lobe with the motor area located at the frontal lobe in the left hemisphere of the brain, allows the 'sound' of a word to be connected to the regions responsible for its articulation. Differences in the development of these auditory-motor connections may explain differences in people's ability to learn words. The results of the study are published in the journal Proceedings of the National Academy of Sciences (PNAS).

Dr Marco Catani, co-author from King's College London Institute of Psychiatry said: "Often humans take their ability to learn words for granted. This research sheds new light on the unique ability of humans to learn a language, as this pathway is not present in other species. The implications of our findings could be wide ranging -- from how language is taught in schools and rehabilitation from injury, to early detection of language disorders such as dyslexia. In addition these findings could have implications for other disorders where language is affected such as autism and schizophrenia."

The study involved 27 healthy volunteers. Researchers used diffusion tensor imaging to image the structure of the brain before a word learning task and functional MRI, to detect the regions in the brain that were most active during the task. They found a strong relationship between the ability to remember words and the structure of arcuate fasciculus, which connects two brain areas: the territory of Wernicke, related to auditory language decoding, and Broca's area, which coordinates the movements associated with speech and the language processing.

In participants able to learn words more successfully their arcuate fasciculus was more myelinated i.e. the nervous tissue facilitated faster conduction of the electrical signal. In addition the activity between the two regions was more co-ordinated in these participants.

Dr Catani concludes, "Now we understand that this is how we learn new words, our concern is that children will have less vocabulary as much of their interaction is via screen, text and email rather than using their external prosthetic memory. This research reinforces the need for us to maintain the oral tradition of talking to our children."

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

|

Story Source:

The above story is based on materials provided by King's College London.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. López-Barroso D, Catani M, Ripollés P, Dell'Acqua F, Rodríguez-Fornells A, de Diego-Balaguer R. Word learning is mediated by the left arcuate fasciculus. PNAS, 2013 DOI: 10.1073/pnas.1301696110
APA

MLA

Note: If no author is given, the source is cited instead.

Search ScienceDaily

Number of stories in archives: 140,690

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily's archives for related news topics,
the latest news stories, reference articles, science videos, images, and books.

Recommend ScienceDaily on Facebook, Twitter, and Google:

Other social bookmarking and sharing services:

|

 
Interested in ad-free access? If you'd like to read ScienceDaily without ads, let us know!
  more breaking science news

Social Networks


Follow ScienceDaily on Facebook, Twitter,
and Google:

Recommend ScienceDaily on Facebook, Twitter, and Google +1:

Other social bookmarking and sharing tools:

|

Breaking News

... from NewsDaily.com

  • more science news

In Other News ...

  • more top news

Science Video News


Stroke Stopper

A new "wingspan" stent helps restore blood flow for patients with intracranial atherosclerotic disease, or ICAD. Surgeons insert the stent up the leg. ...  > full story

Strange Science News

 

Free Subscriptions

... from ScienceDaily

Get the latest science news with our free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Feedback

... we want to hear from you!

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?