Featured Research

from universities, journals, and other organizations

Bio-inspired design may lead to more energy efficient windows

Date:
August 2, 2013
Source:
University of Toronto Faculty of Applied Science & Engineering
Summary:
Scientists are turning to nature to find a way to make windows more energy efficient. In a recent article, researchers describe a novel process to cut down on heat loss during the winter and keep buildings cool during the summer. Their "bio-inspired approach to thermal control for cooling (or heating) building window surfaces" calls for attaching optically clear, flexible elastomer sheets, bonded to regular glass window panes.

A. Schematic of the composite window structure. B. The artificial vascular network layer.
Credit: Image courtesy of University of Toronto Faculty of Applied Science & Engineering

University of Toronto Engineering professor Ben Hatton (MSE) is turning to nature to find a way to make windows more energy efficient.

Related Articles


In a recent article in Solar Energy Materials & Solar Cells, Hatton and colleagues at Harvard University describe a novel process to cut down on heat loss during the winter and keep buildings cool during the summer. Their "bio-inspired approach to thermal control for cooling (or heating) building window surfaces" calls for attaching optically clear, flexible elastomer sheets, bonded to regular glass window panes.

The elastomer sheets, made from polydimethylsiloxane (PDMS) have channels running through them through which room temperature water flows. The technique has resulted in 7 to 9 degrees of cooling in laboratory experiments and is effective both at small and large scales, Hatton and his colleagues said.

"Our results show that an artificial vascular network within a transparent layer, composed of channels on the micrometer to millimeter scale, and extending over the surface of a window, offers an additional and novel cooling mechanism for building windows and a new thermal control tool for building design," he said.

Hatton noted that windows account for about 40 per cent of building energy costs. To find a solution to the problem, he turned to nature. "In contrast to man-made thermal control systems, living organisms have evolved an entirely different and highly efficient mechanism to control temperature that is based on the design of internal vascular networks. For example, blood vessels dilate to increase blood flow close to the skin surface to increase convective heat transfer, whereas they constrict and limit flow when our skin is exposed to cold."

He said the technique could also be applied to solar panels, increasing their efficiency. He also noted that as the water flows through the panels, it gets hotter, and this hot water could be used to supply heated water to an existing hot water system or to a heat storage system.


Story Source:

The above story is based on materials provided by University of Toronto Faculty of Applied Science & Engineering. Note: Materials may be edited for content and length.


Journal Reference:

  1. Benjamin D. Hatton, Ian Wheeldon, Matthew J. Hancock, Mathias Kolle, Joanna Aizenberg, Donald E. Ingber. An artificial vasculature for adaptive thermal control of windows. Solar Energy Materials and Solar Cells, 2013; 117: 429 DOI: 10.1016/j.solmat.2013.06.027

Cite This Page:

University of Toronto Faculty of Applied Science & Engineering. "Bio-inspired design may lead to more energy efficient windows." ScienceDaily. ScienceDaily, 2 August 2013. <www.sciencedaily.com/releases/2013/08/130802132207.htm>.
University of Toronto Faculty of Applied Science & Engineering. (2013, August 2). Bio-inspired design may lead to more energy efficient windows. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2013/08/130802132207.htm
University of Toronto Faculty of Applied Science & Engineering. "Bio-inspired design may lead to more energy efficient windows." ScienceDaily. www.sciencedaily.com/releases/2013/08/130802132207.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com
Los Angeles Police To Receive 7,000 Body Cameras

Los Angeles Police To Receive 7,000 Body Cameras

Newsy (Dec. 17, 2014) Los Angeles Mayor Eric Garcetti announced the cameras will be distributed starting Jan. 1. Video provided by Newsy
Powered by NewsLook.com
Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Buzz60 (Dec. 17, 2014) Jaguar unveils a virtual 360 degree windshield that may be the most futuristic automotive development yet. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Researchers Bring Player Pianos Back to Life

Researchers Bring Player Pianos Back to Life

AP (Dec. 17, 2014) Stanford University wants to unlock the secrets of the player piano. Researchers are restoring and studying self-playing pianos and the music rolls that recorded major composers performing their own work. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins