Featured Research

from universities, journals, and other organizations

Pass the salt: Common condiment could enable new high-tech industry -- silicon nanostructures

Date:
August 8, 2013
Source:
Oregon State University
Summary:
Chemists have identified a compound that could significantly reduce the cost and potentially enable the mass commercial production of silicon nanostructures -- materials that have huge potential in everything from electronics to biomedicine and energy storage. This extraordinary compound is called table salt.

This silicon nanostructure was created using a new process developed at Oregon State University.
Credit: Image courtesy of Oregon State University

Chemists at Oregon State University have identified a compound that could significantly reduce the cost and potentially enable the mass commercial production of silicon nanostructures -- materials that have huge potential in everything from electronics to biomedicine and energy storage.

This extraordinary compound is called table salt.

Simple sodium chloride, most frequently found in a salt shaker, has the ability to solve a key problem in the production of silicon nanostructures, researchers just announced in Scientific Reports, a professional journal.

By melting and absorbing heat at a critical moment during a "magnesiothermic reaction," the salt prevents the collapse of the valuable nanostructures that researchers are trying to create. The molten salt can then be washed away by dissolving it in water, and it can be recycled and used again.

The concept, surprising in its simplicity, should open the door to wider use of these remarkable materials that have stimulated scientific research all over the world.

"This could be what it takes to open up an important new industry," said David Xiulei Ji, an assistant professor of chemistry in the OSU College of Science. "There are methods now to create silicon nanostructures, but they are very costly and can only produce tiny amounts.

"The use of salt as a heat scavenger in this process should allow the production of high-quality silicon nanostructures in large quantities at low cost," he said. "If we can get the cost low enough many new applications may emerge."

Silicon, the second most abundant element in Earth's crust, has already created a revolution in electronics. But silicon nanostructures, which are complex structures much smaller than a speck of dust, have potential that goes far beyond the element itself.

Uses are envisioned in photonics, biological imaging, sensors, drug delivery, thermoelectric materials that can convert heat into electricity, and energy storage.

Batteries are one of the most obvious and possibly first applications that may emerge from this field, Ji said. It should be possible with silicon nanostructures to create batteries -- for anything from a cell phone to an electric car -- that last nearly twice as long before they need recharging.

Existing technologies to make silicon nanostructures are costly, and simpler technologies in the past would not work because they required such high temperatures. Ji developed a methodology that mixed sodium chloride and magnesium with diatomaceous earth, a cheap and abundant form of silicon.

When the temperature reached 801 degrees centigrade, the salt melted and absorbed heat in the process. This basic chemical concept -- a solid melting into a liquid absorbs heat -- kept the nanostructure from collapsing.

The sodium chloride did not contaminate or otherwise affect the reaction, researchers said. Scaling reactions such as this up to larger commercial levels should be feasible, they said.

The study also created, for the first time with this process, nanoporous composite materials of silicon and germanium. These could have wide applications in semiconductors, thermoelectric materials and electrochemical energy devices.

Funding for the research was provided by OSU. Six other researchers from the Department of Chemistry and the OSU Department of Chemical Engineering also collaborated on the work.


Story Source:

The above story is based on materials provided by Oregon State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wei Luo, Xingfeng Wang, Colin Meyers, Nick Wannenmacher, Weekit Sirisaksoontorn, Michael M. Lerner, Xiulei Ji. Efficient Fabrication of Nanoporous Si and Si/Ge Enabled by a Heat Scavenger in Magnesiothermic Reactions. Scientific Reports, 2013; 3 DOI: 10.1038/srep02222

Cite This Page:

Oregon State University. "Pass the salt: Common condiment could enable new high-tech industry -- silicon nanostructures." ScienceDaily. ScienceDaily, 8 August 2013. <www.sciencedaily.com/releases/2013/08/130808142142.htm>.
Oregon State University. (2013, August 8). Pass the salt: Common condiment could enable new high-tech industry -- silicon nanostructures. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2013/08/130808142142.htm
Oregon State University. "Pass the salt: Common condiment could enable new high-tech industry -- silicon nanostructures." ScienceDaily. www.sciencedaily.com/releases/2013/08/130808142142.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins