Featured Research

from universities, journals, and other organizations

'Trojan' asteroids in far reaches of solar system more common than previously thought

Date:
August 29, 2013
Source:
University of British Columbia
Summary:
Astronomers have discovered the first Trojan asteroid sharing the orbit of Uranus, and believe 2011 QF99 is part of a larger-than-expected population of transient objects temporarily trapped by the gravitational pull of the solar system's giant planets.

This image shows the motion of 2011 QF99 over the next 59 kyr. Shown here is the trajectory of 2011 QF99, according to the best fit to the observations. The current position is marked by a red square, and the black line shows the trajectory 59 kyr into the future. L4 and L5 are the triangular Lagrange points, the points in space which
Credit: UBC Astronomy

UBC astronomers have discovered the first Trojan asteroid sharing the orbit of Uranus, and believe 2011 QF99 is part of a larger-than-expected population of transient objects temporarily trapped by the gravitational pull of the Solar System's giant planets.

Trojans are asteroids that share the orbit of a planet, occupying stable positions known as Lagrangian points. Astronomers considered their presence at Uranus unlikely because the gravitational pull of larger neighbouring planets would destabilize and expel any Uranian Trojans over the age of the Solar System.

To determine how the 60 kilometre-wide ball of rock and ice ended up sharing an orbit with Uranus the astronomers created a simulation of the Solar System and its co-orbital objects, including Trojans.

"Surprisingly, our model predicts that at any given time three per cent of scattered objects between Jupiter and Neptune should be co-orbitals of Uranus or Neptune," says Mike Alexandersen, lead author of the study to be published tomorrow in the journal Science. This percentage had never before been computed, and is much higher than previous estimates.

Several temporary Trojans and co-orbitals have been discovered in the Solar System during the past decade. QF99 is one of those temporary objects, only recently (within the last few hundred thousand years) ensnared by Uranus and set to escape the planet's gravitational pull in about a million years.

"This tells us something about the current evolution of the Solar System," says Alexandersen. "By studying the process by which Trojans become temporarily captured, one can better understand how objects migrate into the planetary region of the Solar System."

UBC astronomers Brett Gladman, Sarah Greenstreet and colleagues at the National Research Council of Canada and Observatoire de Besancon in France were part of the research team.


Story Source:

The above story is based on materials provided by University of British Columbia. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Alexandersen, B. Gladman, S. Greenstreet, J. J. Kavelaars, J.-M. Petit, S. Gwyn. A Uranian Trojan and the Frequency of Temporary Giant-Planet Co-Orbitals. Science, 2013; 341 (6149): 994 DOI: 10.1126/science.1238072

Cite This Page:

University of British Columbia. "'Trojan' asteroids in far reaches of solar system more common than previously thought." ScienceDaily. ScienceDaily, 29 August 2013. <www.sciencedaily.com/releases/2013/08/130829145214.htm>.
University of British Columbia. (2013, August 29). 'Trojan' asteroids in far reaches of solar system more common than previously thought. ScienceDaily. Retrieved July 27, 2014 from www.sciencedaily.com/releases/2013/08/130829145214.htm
University of British Columbia. "'Trojan' asteroids in far reaches of solar system more common than previously thought." ScienceDaily. www.sciencedaily.com/releases/2013/08/130829145214.htm (accessed July 27, 2014).

Share This




More Space & Time News

Sunday, July 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

This Week @ NASA, July 25, 2014

This Week @ NASA, July 25, 2014

NASA (July 25, 2014) Apollo 11 celebration, Next Giant Leap anticipation, ISS astronauts appear in the House and more... Video provided by NASA
Powered by NewsLook.com
Space to Ground: Coming and Going

Space to Ground: Coming and Going

NASA (July 25, 2014) One station cargo ship leaves, another arrives, aquatic research and commercial spinoffs. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
How A Solar Flare Could Have Wrecked Earth's Electronics

How A Solar Flare Could Have Wrecked Earth's Electronics

Newsy (July 25, 2014) Researchers say if Earth had been a week earlier in its orbit around the sun, it would have taken a direct hit from a 2012 coronal mass ejection. Video provided by Newsy
Powered by NewsLook.com
Raw: ISS Cargo Ship Launches in Kazakhstan

Raw: ISS Cargo Ship Launches in Kazakhstan

AP (July 23, 2014) The Progress 56 cargo ship launched from the Baikonur Cosmodrome in Kazakhstan Wednesday. NASA says it will deliver cargo and crew supplies to the International Space Station. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins