Featured Research

from universities, journals, and other organizations

Optics: Nanotechnology's benefits brought into focus

Date:
August 31, 2013
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Conventional lenses, made of shaped glass, are limited in how precisely they can redirect beams of incoming light and make them meet at a point. Now, scientists have proposed a novel approach to 'superlens' systems that can surpass this classical limit of focusing light.

Conventional lenses, made of shaped glass, are limited in how precisely they can redirect beams of incoming light and make them meet at a point. Now, a team led by Zhengtong Liu at the A*STAR Institute of High Performance Computing, Singapore, has proposed a novel approach to 'superlens' systems that can surpass this classical limit of focusing light.

Related Articles


The team used numerical modeling to develop the design. Concentrating radiation into a smaller volume in this way enhances the interaction between light and matter, and thus the concept could prove useful in highly sensitive sensors of the future.

Light is a type of wave. Unlike the rise and fall in sea water at a beach, however, a light wave consists of oscillating electric and magnetic fields. The wavelength -- the distance a wave travels in one oscillation cycle -- imposes a limit on the minimum size to which light can be focused. However, this limit does not apply over small distances that are comparable to the wavelength, which is known as the near-field regime.

The researchers designed a silver nanostructure embedded in glass. Their device combined two separate elements. One component was a nanoantenna -- similar to the radio-frequency antennas used to detect television-carrying signals, but reduced in size to match the wavelength of optical radiation. The other component was a superlens made of a thin slab of silver. The purpose of the superlens was to move the light detected by the nanoantenna into an imaging plane. "Using nanoantennas to concentrate light is not a new idea," says Liu. "But by adding a superlens to translate the concentrated spot of light, we can overcome limitations imposed by the optical properties of the material."

Liu and co-workers mathematically modeled the optical response of this device to an incoming beam of red light. They then altered the dimensions of the structure to maximize the enhancement in electric field. In this way, they were able to show that a 20-nanometer-thick superlens, separated by 34 nanometers from an antenna made of two silver ellipses, could increase the electric field of light by a factor of 250.

Confining light into these super intense 'hot-spots' could prove a boon for optical detection systems. "Our concept is targeted at biomedical and chemical sensing applications," explains Liu. "The next step is to seek collaboration opportunities to actually make the sensor and test it in the field."


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Liu, Z., Li, E., Shalaev, V. M. & Kildishev, A. V. Near field enhancement in silver nanoantenna-superlens systems. Applied Physics Letters, 101, 021109 (2012)

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Optics: Nanotechnology's benefits brought into focus." ScienceDaily. ScienceDaily, 31 August 2013. <www.sciencedaily.com/releases/2013/08/130831110653.htm>.
The Agency for Science, Technology and Research (A*STAR). (2013, August 31). Optics: Nanotechnology's benefits brought into focus. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2013/08/130831110653.htm
The Agency for Science, Technology and Research (A*STAR). "Optics: Nanotechnology's benefits brought into focus." ScienceDaily. www.sciencedaily.com/releases/2013/08/130831110653.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins