Featured Research

from universities, journals, and other organizations

New approach enhances quantum-based secure communication

Date:
September 4, 2013
Source:
University of Calgary
Summary:
Scientists have overcome an "Achilles' heel" of quantum-based secure communication systems, using a new approach that works in the real world to safeguard secrets. The team's research removes a big obstacle to realizing future applications of quantum communication, including a fully functional quantum network.

The university team, led by Wolfgang Tittel, professor of physics and astronomy at the University of Calgary, successfully tested its new QKD system over a fibre optic cable connecting the university’s Foothills campus and SAIT Polytechnic with the university's main campus.
Credit: Photo by Riley Brandt

University of Calgary scientists have overcome an "Achilles' heel" of quantum-based secure communication systems, using a new approach that works in the real world to safeguard secrets.

The team's research -- published in the journal Physical Review Letters back-to-back with similar work by a group from Hefei, China -- also removes a big obstacle to realizing future applications of quantum communication, including a fully functional quantum network.

"I hope that our new quantum key distribution (QKD) system shows to people who take security seriously that QKD has many advantages and is a viable approach to safeguarding secret information," says Wolfgang Tittel, professor of physics and astronomy and the Alberta Innovates Technology Futures Strategic Research Chair in Quantum Secured Communication.

Tittel's co-authors on the scientific paper are his then-PhD students Joshua Slater, Philip Chan and Itzel Lucio-Martinez, and then-Masters student Allison Rubenok.

How QKD-secured communication works

QKD-secured communication networks -- in banking, health care, government and other sectors -- would be much more secure than networks currently protected by encrypting secret information with mathematical algorithms that ultimately may be solved or "broken" and the secrets revealed, Tittel says.

In QKD-secured communication, two parties exchange photons (individual quantum particles of light) to create a shared random secret key known only to them that can be used encrypt and decrypt messages.

Due to fundamental principles of quantum mechanics, an eavesdropper trying to learn the secret key would inevitably change it, thereby alerting the communicating parties about the intrusion. In this case, the key would be discarded.

Conversely, if the key hasn't been corrupted during distribution, it is not known to an eavesdropper and can then be used for encryption.

Research identifies vulnerability

However, recent research has shown that "there is really a danger" of an eavesdropper shining laser light into the fibre optic cable used by the communicating parties, interfering with their photon detectors and rendering the key distribution insecure without them knowing it, Tittel says.

In overcoming that vulnerability, the University of Calgary team implemented a recently discovered new QKD protocol, which involves the two communicating parties sending their photons to a "middle man," who does a joint measurement on the two photons. This tells him only if the two parties have the same key, but provides no information about the key itself.

So even if an eavesdropper tries to attack the system through the parties' photon detectors, the key distribution either would either remain secure or the system would alert the parties to the intruder so they wouldn't use that particular key, Tittel says.

New protocol allows transmission over greater distance

Moreover, being able to jointly measure two photons sent by the communicating parties is "an important step" toward creating a "quantum repeater," technology that would enable transmission on a QKD-secured network over distances greater than the maximum 200 kilometres now possible, he notes.

The university team successfully tested its new QKD system over a fibre optic cable connecting the university's Foothills Hospital campus and SAIT Polytechnic with the university's main campus, as well as more than 100 kilometres of cable in the laboratory.

"Being able to implement this new protocol will have a big impact," Tittel predicts. "I believe it is the next generation of QKD-secured communication."

Main funding support for the research came from Alberta Innovates Technology Futures and the Natural Sciences and Engineering Research Council of Canada.


Story Source:

The above story is based on materials provided by University of Calgary. The original article was written by Mark Lowey. Note: Materials may be edited for content and length.


Cite This Page:

University of Calgary. "New approach enhances quantum-based secure communication." ScienceDaily. ScienceDaily, 4 September 2013. <www.sciencedaily.com/releases/2013/09/130904114831.htm>.
University of Calgary. (2013, September 4). New approach enhances quantum-based secure communication. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2013/09/130904114831.htm
University of Calgary. "New approach enhances quantum-based secure communication." ScienceDaily. www.sciencedaily.com/releases/2013/09/130904114831.htm (accessed October 2, 2014).

Share This



More Computers & Math News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mozilla Bets On Software To Sell Its Chromecast Competitor

Mozilla Bets On Software To Sell Its Chromecast Competitor

Newsy (Oct. 1, 2014) Mozilla's Matchstick streaming device is entering a crowded market. The company is banking on open-source software to rise above the competition. Video provided by Newsy
Powered by NewsLook.com
App Teaches Kindergarteners to Code

App Teaches Kindergarteners to Code

AP (Oct. 1, 2014) They can't all read yet, but soon kindergarteners may be able to create basic computer code. Researchers in Massachusetts developed an app that teaches young kids a simple computer programming language. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Microsoft Goes For Familiarity Over Novelty In Windows 10

Microsoft Goes For Familiarity Over Novelty In Windows 10

Newsy (Sep. 30, 2014) At a special event in San Francisco, Microsoft introduced its latest operating system, Windows 10, which combines key features from earlier versions. Video provided by Newsy
Powered by NewsLook.com
French Apple Fans Discover the Apple Watch

French Apple Fans Discover the Apple Watch

AFP (Sep. 30, 2014) Apple fans in France discover the latest toy, the Apple Watch. The watch comes in two sizes and an array of interchangeable, fashionable wrist straps. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins