Featured Research

from universities, journals, and other organizations

Inflatable antennae could give CubeSats greater reach: Design inflates with powder that turns into gas

Date:
September 6, 2013
Source:
Massachusetts Institute of Technology
Summary:
Researchers have come up with a design that may significantly increase the communication range of small satellites, enabling them to travel much farther in the solar system.

View of a CubeSat equipped with an inflated antenna, in a NASA radiation chamber.
Credit: Alessandra Babuscia

The future of satellite technology is getting small -- about the size of a shoebox, to be exact. These so-called "CubeSats," and other small satellites, are making space exploration cheaper and more accessible: The minuscule probes can be launched into orbit at a fraction of the weight and cost of traditional satellites.

But with such small packages come big limitations -- namely, a satellite's communication range. Large, far-ranging radio dishes are impossible to store in a CubeSat's tight quarters. Instead, the satellites are equipped with smaller, less powerful antennae, restricting them to orbits below those of most geosynchronous satellites.

Now researchers at MIT have come up with a design that may significantly increase the communication range of small satellites, enabling them to travel much farther in the solar system: The team has built and tested an inflatable antenna that can fold into a compact space and inflate when in orbit.

The antenna significantly amplifies a radio signal, allowing a CubeSat to transmit data back to Earth at a higher rate. The distance that can be covered by a satellite outfitted with an inflatable antenna is seven times farther than that of existing CubeSat communications.

"With this antenna you could transmit from the moon, and even farther than that," says Alessandra Babuscia, who led the research as a postdoc at MIT. "This antenna is one of the cheapest and most economical solutions to the problem of communications."

The team, led by Babuscia, is part of Professor Sara Seager's research group and also includes graduate students Benjamin Corbin, Mary Knapp, and Mark Van de Loo from MIT, and Rebecca Jensen-Clem from the California Institute of Technology. The researchers, from MIT's departments of Aeronautics and Astronautics and of Earth, Atmospheric and Planetary Sciences, have detailed their results in the journal Acta Astronautica.

'Magic' powder

An inflatable antenna is not a new idea. In fact, previous experiments in space have successfully tested such designs, though mostly for large satellites: To inflate these bulkier antennae, engineers install a system of pressure valves to fill them with air once in space -- heavy, cumbersome equipment that would not fit within a CubeSat's limited real estate.

Babuscia raises another concern: As small satellites are often launched as secondary payloads aboard rockets containing other scientific missions, a satellite loaded with pressure valves may backfire, with explosive consequences, jeopardizing everything on board. This is all the more reason, she says, to find a new inflation mechanism.

The team landed on a lighter, safer solution, based on sublimating powder, a chemical compound that transforms from a solid powder to a gas when exposed to low pressure.

"It's almost like magic," Babuscia explains. "Once you are in space, the difference in pressure triggers a chemical reaction that makes the powder sublimate from the solid state to the gas state, and that inflates the antenna."

Testing an inflating idea

Babuscia and her colleagues built two prototype antennae, each a meter wide, out of Mylar; one resembled a cone and the other a cylinder when inflated. They determined an optimal folding configuration for each design, and packed each antenna into a 10-cubic-centimeter space within a CubeSat, along with a few grams of benzoic acid, a type of sublimating powder. The team tested each antenna's inflation in a vacuum chamber at MIT, lowering the pressure to just above that experienced in space. In response, the powder converted to a gas, inflating both antennae to the desired shape.

The group also tested each antenna's electromagnetic properties -- an indication of how well an antenna can transmit data. In radiation simulations of both the conical and cylindrical designs, the researchers observed that the cylindrical antenna performed slightly better, transmitting data 10 times faster, and seven times farther, than existing CubeSat antennae.

An antenna made of thin Mylar, while potentially powerful, can be vulnerable to passing detritus in space. Micrometeroids, for example, can puncture a balloon, causing leaks and affecting an antenna's performance. But Babuscia says the use of sublimating powder can circumvent the problems caused by micrometeroid impacts. She explains that a sublimating powder will only create as much gas as needed to fully inflate an antenna, leaving residual powder to sublimate later, to compensate for any later leaks or punctures.

The group tested this theory in a coarse simulation, modeling the inflatable antenna's behavior with different frequency of impacts to assess how much of an antenna's surface may be punctured and how much air may leak out without compromising its performance. The researchers found that with the right sublimating powder, the lifetime of a CubeSat's inflatable antenna may be a few years, even if it is riddled with small holes.

Babuscia says future tests may involve creating tiny holes in a prototype and inflating it in a vacuum chamber to see how much powder would be required to keep the antenna inflated. She is now continuing to refine the antenna design at JPL.

"In the end, what's going to make the success of CubeSat communications will be a lot of different ideas, and the ability of engineers to find the right solution for each mission," Babuscia says. "So inflatable antennae could be for a spacecraft going by itself to an asteroid. For another problem, you'd need another solution. But all this research builds a set of options to allow these spacecraft, made directly by universities, to fly in deep space."


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by Jennifer Chu. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alessandra Babuscia, Benjamin Corbin, Mary Knapp, Rebecca Jensen-Clem, Mark Van de Loo, Sara Seager. Inflatable antenna for cubesats: Motivation for development and antenna design. Acta Astronautica, 2013; 91: 322 DOI: 10.1016/j.actaastro.2013.06.005

Cite This Page:

Massachusetts Institute of Technology. "Inflatable antennae could give CubeSats greater reach: Design inflates with powder that turns into gas." ScienceDaily. ScienceDaily, 6 September 2013. <www.sciencedaily.com/releases/2013/09/130906214113.htm>.
Massachusetts Institute of Technology. (2013, September 6). Inflatable antennae could give CubeSats greater reach: Design inflates with powder that turns into gas. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2013/09/130906214113.htm
Massachusetts Institute of Technology. "Inflatable antennae could give CubeSats greater reach: Design inflates with powder that turns into gas." ScienceDaily. www.sciencedaily.com/releases/2013/09/130906214113.htm (accessed August 23, 2014).

Share This




More Space & Time News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com
Space to Ground: Hello Georges

Space to Ground: Hello Georges

NASA (Aug. 18, 2014) Europe's ATV-5 delivers new science and the crew tests smart SPHERES. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, August 15, 2014

This Week @ NASA, August 15, 2014

NASA (Aug. 15, 2014) Carbon Observatory’s First Data, ATV-5 Delivers Cargo, Cygnus Departs Station and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins