New! Sign up for our free email newsletter.
Science News
from research organizations

Nano-optics: Integrated optical circuits coming soon?

Date:
September 11, 2013
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
An experimental demonstration of light scattering controlled by silicon nanoparticles augurs well for the development of integrated optical circuits.
Share:
FULL STORY

An experimental demonstration of light scattering controlled by silicon nanoparticles augurs well for the development of integrated optical circuits.

Optical fibers are now delivering ultrafast internet connections to homes across the world. By replacing electronics-based technologies with architectures that process pulses of light, a similar leap in speed might also be possible for other forms of information handling. To realize this potential, scientists must first develop novel devices that are capable of controlling the flow of light at the nanometer scale.

Such a device may now be within reach. Yuan Hsing Fu at the A*STAR Data Storage Institute and co‐workers have demonstrated a unique optical effect in nanoparticles that allows them to control the direction in which visible light scatters1.

Miniaturization is key to the success of modern-day electronics: complicated circuitry must be made to fit into portable devices. Likewise, the hardware for processing optical signals must also be miniaturized. In this field, known as photonics, the design of optical components requires an entirely new approach.

The effect demonstrated by Fu and co-workers reveals how nanoparticles can be used to scatter light controllably in the visible spectral range. The researchers first designed a method to measure the scattering, and then fired light at tiny spheres of silicon. When the beam hit a sphere, some scattered backward and some scattered forward. The researchers also showed that it is possible to control the ratio of movement in the two directions by changing the diameter of the nanosphere.

Using silicon spheres with diameters of between 100 and 200 nanometers, the team observed that the amount of forward-scattered light varied from being roughly equal to the amount that was backward-scattered to being six times more intense. They also found that the effect could split the light according to wavelength: for example, nanoparticles of a particular size that backscattered predominantly green light also forward scattered mainly yellow radiation (see image).

The researchers chose silicon over the more conventional choice of a metal such as gold because it reduces energy loss and can influence both the electric and magnetic components of light. The 'preferential' scattering of radiation arises because of the mutual interaction between the electric and magnetic resonances of the nanosphere.

This effect is analogous to that of a radio-frequency antenna. "The experimental proof of such relatively simple nano-optical systems with both an electric and magnetic response in the optical spectral range could pave the way to scaling the optical nano-antenna concept down to a single nanoparticle," says Fu. Optical nanoscale antennas could be useful for improving solar cells and might form a crucial building block for integrated optical circuits.


Story Source:

Materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Content may be edited for style and length.


Journal Reference:

  1. Yuan Hsing Fu, Arseniy I. Kuznetsov, Andrey E. Miroshnichenko, Ye Feng Yu, Boris Luk’yanchuk. Directional visible light scattering by silicon nanoparticles. Nature Communications, 2013; 4: 1527 DOI: 10.1038/ncomms2538

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Nano-optics: Integrated optical circuits coming soon?." ScienceDaily. ScienceDaily, 11 September 2013. <www.sciencedaily.com/releases/2013/09/130911125311.htm>.
The Agency for Science, Technology and Research (A*STAR). (2013, September 11). Nano-optics: Integrated optical circuits coming soon?. ScienceDaily. Retrieved March 28, 2024 from www.sciencedaily.com/releases/2013/09/130911125311.htm
The Agency for Science, Technology and Research (A*STAR). "Nano-optics: Integrated optical circuits coming soon?." ScienceDaily. www.sciencedaily.com/releases/2013/09/130911125311.htm (accessed March 28, 2024).

Explore More

from ScienceDaily

RELATED STORIES