Featured Research

from universities, journals, and other organizations

Dirty job made easier: Microfluidic technique recovers DNA

Date:
September 18, 2013
Source:
National Institute of Standards and Technology (NIST)
Summary:
A team of researchers has demonstrated an improved microfluidic technique for recovering DNA from real-world, complex mixtures such as dirt. The technique delivers DNA from these crude samples with much less effort and in less time than conventional techniques.

A laboratory technician pipettes dirt dissolved in a buffer solution from which DNA will be recovered using a novel NIST/Applied Research Associates microfluidic extraction technique. The dirt, originally collected on a swab (lower section seen in vial) like those on the right, is an example of a crude sample from which DNA for human identification has typically been difficult to obtain.
Credit: Michael E. Newman, NIST

A team of researchers at the National Institute of Standards and Technology (NIST) and Applied Research Associates, Inc. (ARA, Alexandria, Va.) has demonstrated an improved microfluidic technique for recovering DNA from real-world, complex mixtures such as dirt. According to a recent paper published in Electrophoresis, their technique delivers DNA from these crude samples with much less effort and in less time than conventional techniques. It yields DNA concentrations that are optimal for human identification procedures and can potentially be miniaturized for use outside the laboratory.

Forensic DNA testing is extensively used to link individuals to crimes, establish paternity, solve missing person cases, identify casualties in military and mass fatality events, and provide genealogical histories. Typically, it takes a skilled technician in a properly equipped laboratory 1-2 days to extract DNA from a sample, quantify the amount, make multiple copies of specific genetic sequences (PCR amplification), and then create a "DNA signature" that is unique to an individual. However, when crude samples are the source of the desired DNA, the contaminants and particulates mixed in with the genetic material can seriously complicate the reading of a complete and accurate DNA signature. The additional purification steps needed for conventional means of handling crude samples, such as filtering, not only lengthen the processing time but also tend to reduce the quantity and concentration of DNA delivered -- making human identification more difficult or impossible.

The new NIST/ARA technique is based on one the team first developed four years ago for crude samples called "gradient elution moving boundary electrophoreses" or GEMBE. GEMBE separates specific components of a sample by a molecular "tug-of-war." The sample is pushed in one direction by an electric field and in the other by the counterflow of a buffer solution. Gradually reducing the buffer flow allows selected components from the sample to pass into a microfluidic channel to be analyzed. Unwanted components of the crude sample are kept out.

To work with DNA, the researchers modified GEMBE so that two different buffer solutions -- one with ions that move quickly and one with ions that move slowly during electrophoresis -- are placed in the separate reservoirs connected by the microchannel. When a crude sample is suspended in the slow ion solution and electric current is applied, the DNA within the sample moves into the microchannel and concentrates at the interface between the two buffers. Unwanted contaminants and particulates -- including those that can inhibit PCR amplification -- are left behind. The collected DNA can be quantified directly in the microchannel and then delivered into a vial for further processing.

To demonstrate the forensic capabilities of its new technique, the NIST/ARA team extracted, purified, quantified and concentrated human genomic DNA from both clean and dirty buccal (cheek cell) swabs. In both cases, the process yielded full DNA signatures.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Elizabeth A. Strychalski, Christopher Konek, Erica L. R. Butts, Peter M. Vallone, Alyssa C. Henry, David Ross. DNA purification from crude samples for human identification using gradient elution isotachophoresis. ELECTROPHORESIS, 2013; 34 (17): 2522 DOI: 10.1002/elps.201300133

Cite This Page:

National Institute of Standards and Technology (NIST). "Dirty job made easier: Microfluidic technique recovers DNA." ScienceDaily. ScienceDaily, 18 September 2013. <www.sciencedaily.com/releases/2013/09/130918130648.htm>.
National Institute of Standards and Technology (NIST). (2013, September 18). Dirty job made easier: Microfluidic technique recovers DNA. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2013/09/130918130648.htm
National Institute of Standards and Technology (NIST). "Dirty job made easier: Microfluidic technique recovers DNA." ScienceDaily. www.sciencedaily.com/releases/2013/09/130918130648.htm (accessed April 17, 2014).

Share This



More Plants & Animals News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com
Flamingo Frenzy Ahead of Zoo Construction

Flamingo Frenzy Ahead of Zoo Construction

AP (Apr. 17, 2014) With plenty of honking, flapping, and fluttering, more than three dozen Caribbean flamingos at Zoo Miami were rounded up today as the iconic exhibit was closed for renovations. (April 17) Video provided by AP
Powered by NewsLook.com
Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins