Featured Research

from universities, journals, and other organizations

Brain may rely on computer-like mechanism to make sense of novel situations

Date:
September 23, 2013
Source:
University of Colorado at Boulder
Summary:
Our brains give us the remarkable ability to make sense of situations we've never encountered before -- a familiar person in an unfamiliar place, for example, or a coworker in a different job role -- but the mechanism our brains use to accomplish this has been a longstanding mystery of neuroscience. Now, researchers have demonstrated that our brains could process these new situations by relying on a method similar to the "pointer" system used by computers. "Pointers" are used to tell a computer where to look for information stored elsewhere in the system to replace a variable.

“The fact that you understand that the sentence is grammatically well formed means you can process these completely novel inputs,” said Randall O’Reilly, a professor in CU-Boulder’s Department of Psychology and Neuroscience and co-author of the study. “But in the past when we’ve tried to get computer models of a brain to do that, we haven’t been successful.”
Credit: Robert Voight / Fotolia

Our brains give us the remarkable ability to make sense of situations we've never encountered before -- a familiar person in an unfamiliar place, for example, or a coworker in a different job role -- but the mechanism our brains use to accomplish this has been a longstanding mystery of neuroscience.

Related Articles


Now, researchers at the University of Colorado Boulder have demonstrated that our brains could process these new situations by relying on a method similar to the "pointer" system used by computers. "Pointers" are used to tell a computer where to look for information stored elsewhere in the system to replace a variable.

For the study, published today in the Proceedings of the National Academy of Sciences, the research team relied on sentences with words used in unique ways to test the brain's ability to understand the role familiar words play in a sentence even when those words are used in unfamiliar, and even nonsensical, ways.

For example, in the sentence, "I want to desk you," we understand the word "desk" is being used as a verb even though our past experience with the word "desk" is as a noun.

"The fact that you understand that the sentence is grammatically well formed means you can process these completely novel inputs," said Randall O'Reilly, a professor in CU-Boulder's Department of Psychology and Neuroscience and co-author of the study. "But in the past when we've tried to get computer models of a brain to do that, we haven't been successful."

This shows that human brains are able to understand the sentence as a structure with variables -- a subject, a verb and often, an object -- and that the brain can assign a wide variety of words to those variables and still understand the sentence structure. But the way the brain does this has not been understood.

Computers routinely complete similar tasks. In computer science, for example, a computer program could create an email form letter that has a pointer in the greeting line. The pointer would then draw the name information for each individual recipient into the greeting being sent to that person.

In the new study, led by Trenton Kriete, a postdoctoral researcher in O'Reilly's lab, the scientists show that the connections in the brain between the prefrontal cortex and the basal ganglia could play a similar role to the pointers used in computer science. The researchers added new information about how the connections between those two regions of the brain could work into their model.

The result was that the model could be trained to understand simple sentences using a select group of words. After the training period, the researchers fed the model new sentences using familiar words in novel ways and found that the model could still comprehend the sentence structure.

While the results show that a pointer-like system could be at play in the brain, the function is not identical to the system used in computer science, the scientists said. It's similar to comparing an airplane's wing and a bird's wing, O'Reilly said. They're both used for flying but they work differently.

In the brain, for example, the pointer-like system must still be learned. The brain has to be trained, in this case, to understand sentences while a computer can be programmed to understand sentences immediately.

"As your brain learns, it gets better and better at processing these novel kinds of information," O'Reilly said.


Story Source:

The above story is based on materials provided by University of Colorado at Boulder. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. Kriete, D. C. Noelle, J. D. Cohen, R. C. O'Reilly. Indirection and symbol-like processing in the prefrontal cortex and basal ganglia. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1303547110

Cite This Page:

University of Colorado at Boulder. "Brain may rely on computer-like mechanism to make sense of novel situations." ScienceDaily. ScienceDaily, 23 September 2013. <www.sciencedaily.com/releases/2013/09/130923175935.htm>.
University of Colorado at Boulder. (2013, September 23). Brain may rely on computer-like mechanism to make sense of novel situations. ScienceDaily. Retrieved January 31, 2015 from www.sciencedaily.com/releases/2013/09/130923175935.htm
University of Colorado at Boulder. "Brain may rely on computer-like mechanism to make sense of novel situations." ScienceDaily. www.sciencedaily.com/releases/2013/09/130923175935.htm (accessed January 31, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Saturday, January 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NFL Concussions Down; Still on Parents' Minds

NFL Concussions Down; Still on Parents' Minds

AP (Jan. 30, 2015) The NFL announced this week that the number of game concussions dropped by a quarter over last season. Still, the dangers of the sport still weigh on players, and parents&apos; minds. (Jan. 30) Video provided by AP
Powered by NewsLook.com
Study Shows Newborn Chicks Count From Left to Right Just Like Humans

Study Shows Newborn Chicks Count From Left to Right Just Like Humans

Buzz60 (Jan. 30, 2015) Researchers for the first time identified human&apos;s innate preference for associating low and high numbers with the left and right respectively in another species. Jen Markham (@jenmarkham) explains. Video provided by Buzz60
Powered by NewsLook.com
Best Mood Elevating, Feel Good Shakes & Smoothies

Best Mood Elevating, Feel Good Shakes & Smoothies

Buzz60 (Jan. 30, 2015) You can elevate your mood by having a meal in a glass. Fitness and nutrition expert John Basedow (@JohnBasedow) offers the best &apos;feel good&apos; smoothies and shakes chock full of depression-relieving ingredients...including apples, berries, lemons, cucumbers, papaya, kiwi, spinach, kale, whey protein, matcha, ginger, turmeric and cinnamon. Video provided by Buzz60
Powered by NewsLook.com
Poll Says Firstborn Is Responsible, Youngest Is Funnier

Poll Says Firstborn Is Responsible, Youngest Is Funnier

Newsy (Jan. 30, 2015) According to a poll out of the U.K., eldest siblings feel more responsible and successful than their younger siblings. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins