Featured Research

from universities, journals, and other organizations

Brain may rely on computer-like mechanism to make sense of novel situations

Date:
September 23, 2013
Source:
University of Colorado at Boulder
Summary:
Our brains give us the remarkable ability to make sense of situations we've never encountered before -- a familiar person in an unfamiliar place, for example, or a coworker in a different job role -- but the mechanism our brains use to accomplish this has been a longstanding mystery of neuroscience. Now, researchers have demonstrated that our brains could process these new situations by relying on a method similar to the "pointer" system used by computers. "Pointers" are used to tell a computer where to look for information stored elsewhere in the system to replace a variable.

“The fact that you understand that the sentence is grammatically well formed means you can process these completely novel inputs,” said Randall O’Reilly, a professor in CU-Boulder’s Department of Psychology and Neuroscience and co-author of the study. “But in the past when we’ve tried to get computer models of a brain to do that, we haven’t been successful.”
Credit: Robert Voight / Fotolia

Our brains give us the remarkable ability to make sense of situations we've never encountered before -- a familiar person in an unfamiliar place, for example, or a coworker in a different job role -- but the mechanism our brains use to accomplish this has been a longstanding mystery of neuroscience.

Now, researchers at the University of Colorado Boulder have demonstrated that our brains could process these new situations by relying on a method similar to the "pointer" system used by computers. "Pointers" are used to tell a computer where to look for information stored elsewhere in the system to replace a variable.

For the study, published today in the Proceedings of the National Academy of Sciences, the research team relied on sentences with words used in unique ways to test the brain's ability to understand the role familiar words play in a sentence even when those words are used in unfamiliar, and even nonsensical, ways.

For example, in the sentence, "I want to desk you," we understand the word "desk" is being used as a verb even though our past experience with the word "desk" is as a noun.

"The fact that you understand that the sentence is grammatically well formed means you can process these completely novel inputs," said Randall O'Reilly, a professor in CU-Boulder's Department of Psychology and Neuroscience and co-author of the study. "But in the past when we've tried to get computer models of a brain to do that, we haven't been successful."

This shows that human brains are able to understand the sentence as a structure with variables -- a subject, a verb and often, an object -- and that the brain can assign a wide variety of words to those variables and still understand the sentence structure. But the way the brain does this has not been understood.

Computers routinely complete similar tasks. In computer science, for example, a computer program could create an email form letter that has a pointer in the greeting line. The pointer would then draw the name information for each individual recipient into the greeting being sent to that person.

In the new study, led by Trenton Kriete, a postdoctoral researcher in O'Reilly's lab, the scientists show that the connections in the brain between the prefrontal cortex and the basal ganglia could play a similar role to the pointers used in computer science. The researchers added new information about how the connections between those two regions of the brain could work into their model.

The result was that the model could be trained to understand simple sentences using a select group of words. After the training period, the researchers fed the model new sentences using familiar words in novel ways and found that the model could still comprehend the sentence structure.

While the results show that a pointer-like system could be at play in the brain, the function is not identical to the system used in computer science, the scientists said. It's similar to comparing an airplane's wing and a bird's wing, O'Reilly said. They're both used for flying but they work differently.

In the brain, for example, the pointer-like system must still be learned. The brain has to be trained, in this case, to understand sentences while a computer can be programmed to understand sentences immediately.

"As your brain learns, it gets better and better at processing these novel kinds of information," O'Reilly said.


Story Source:

The above story is based on materials provided by University of Colorado at Boulder. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. Kriete, D. C. Noelle, J. D. Cohen, R. C. O'Reilly. Indirection and symbol-like processing in the prefrontal cortex and basal ganglia. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1303547110

Cite This Page:

University of Colorado at Boulder. "Brain may rely on computer-like mechanism to make sense of novel situations." ScienceDaily. ScienceDaily, 23 September 2013. <www.sciencedaily.com/releases/2013/09/130923175935.htm>.
University of Colorado at Boulder. (2013, September 23). Brain may rely on computer-like mechanism to make sense of novel situations. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2013/09/130923175935.htm
University of Colorado at Boulder. "Brain may rely on computer-like mechanism to make sense of novel situations." ScienceDaily. www.sciencedaily.com/releases/2013/09/130923175935.htm (accessed October 21, 2014).

Share This



More Mind & Brain News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Your Birth Season Might Determine Your Temperament

Your Birth Season Might Determine Your Temperament

Newsy (Oct. 20, 2014) A new study says the season you're born in can determine your temperament — and one season has a surprising outcome. Video provided by Newsy
Powered by NewsLook.com
Movies Might Desensitize Violence For Parents, Not Just Kids

Movies Might Desensitize Violence For Parents, Not Just Kids

Newsy (Oct. 20, 2014) A study suggests that parents become desensitized to violent movies as well as children, which leads them to allow their kids to view violent films. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins