Featured Research

from universities, journals, and other organizations

New small-molecule catalyst does the work of many enzymes

Date:
October 3, 2013
Source:
University of Illinois at Urbana-Champaign
Summary:
Researchers report that they have created a human-made catalyst that is an "enzyme mimic." Unlike most enzymes, which act on a single target, the new catalyst can alter the chemical profiles of numerous types of small molecules. The catalyst -- and others like it -- will greatly speed the process of drug discovery, the researchers say. Their findings appear in the Journal of the American Chemistry Society.

University of Illinois chemistry professor M. Christina White and graduate student Paul Gormisky developed a new catalyst that will help streamline the drug-discovery process.
Credit: L. Brian Stauffer

Researchers report that they have created a human-made catalyst that is an "enzyme mimic." Unlike most enzymes, which act on a single target, the new catalyst can alter the chemical profiles of numerous types of small molecules. The catalyst -- and others like it -- will greatly speed the process of drug discovery, the researchers say.

Their findings appear in the Journal of the American Chemistry Society.

Most enzymes are large proteins that act on only one molecular target, said University of Illinois chemistry professor M. Christina White, who conducted the study with graduate student Paul Gormisky. Enzymes generally modify the chemical profiles of their targets to dismantle them or to enable them to perform specific functions.

One key modification involves replacing a carbon-hydrogen (C-H) bond with a carbon-oxygen (C-O-H or C=O) bond. These reactions, called oxidations, are essential to countless processes in the body, from drug detoxification to biosynthesis.

The new catalyst can oxidize specific C-H bonds on many different targets. This will greatly streamline the process of modifying known molecules in new ways, a key part of drug discovery, White said.

"The main cost of drugs isn't making the drug, it's actually discovering the drug, in part because there aren't good ways to diversify molecules," she said. "So if you have one molecule of interest that you'd like to modify, you often have to resynthesize the whole thing. It's not efficient."

The other option is to develop a new enzyme for every modification you want to make, she said.

"Let's say someone in industry has some kind of medicinal compound and they want to oxidize it in a way that will give it a different or improved biological function," she said. "Currently, this may be accomplished either by using an enzyme that had been specifically engineered for that molecule, or, more commonly, through a long synthetic process that could take months to complete."

The new catalyst (called iron CF3-PDP) can accomplish one of these alterations in about half an hour, she said.

This catalyst and a previous one from White's lab (called iron PDP) have been designed to oxidize specific types of C-H bonds. Iron PDP goes after the most electron-rich C-H bond on a molecule, while the new catalyst targets the most electron-rich C-H bond that also is the least encumbered by nearby atoms.

The specificity of the new catalysts allows the researchers to use computational methods and modeling to predict which bonds the catalysts will alter, Gormisky said.

"The other breakthrough here is that this model could be very generally applicable not just to our catalysts, but this whole genre of catalysts that do C-H oxidations," White said.

The new catalyst has some limitations. It only oxidizes certain bonds on linear or cyclic molecules, and it doesn't work on aromatic rings.

"But with the two new catalysts you can quickly and efficiently oxidize up to two different sites on one molecule," she said. She and her colleagues hope to create "a whole toolbox of these things" to oxidize potentially any C-H bond on any molecule, she said.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Journal Reference:

  1. Paul E. Gormisky, M. Christina White. Catalyst-Controlled Aliphatic C–H Oxidations with a Predictive Model for Site-Selectivity. Journal of the American Chemical Society, 2013; 135 (38): 14052 DOI: 10.1021/ja407388y

Cite This Page:

University of Illinois at Urbana-Champaign. "New small-molecule catalyst does the work of many enzymes." ScienceDaily. ScienceDaily, 3 October 2013. <www.sciencedaily.com/releases/2013/10/131003132233.htm>.
University of Illinois at Urbana-Champaign. (2013, October 3). New small-molecule catalyst does the work of many enzymes. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2013/10/131003132233.htm
University of Illinois at Urbana-Champaign. "New small-molecule catalyst does the work of many enzymes." ScienceDaily. www.sciencedaily.com/releases/2013/10/131003132233.htm (accessed April 24, 2014).

Share This



More Matter & Energy News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Obama Plays Soccer With Japanese Robot

Raw: Obama Plays Soccer With Japanese Robot

AP (Apr. 24, 2014) President Obama briefly played soccer with a robot during his visit to Japan on Thursday. The President has been emphasizing technology along with security concerns during his visit. (April 24) Video provided by AP
Powered by NewsLook.com
Obama Encourages Japanese Student-Scientists

Obama Encourages Japanese Student-Scientists

AP (Apr. 24, 2014) President Obama spoke with student innovators in Japan and urged them to take part in increased opportunities for student exchanges with the US. (April 24) Video provided by AP
Powered by NewsLook.com
UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Air Force: $4.2B Saved from Grounding A-10s

Air Force: $4.2B Saved from Grounding A-10s

AP (Apr. 23, 2014) Speaking about the future of the United States Air Force, Chief of Staff Gen. Mark Welsh says the choice to divest the A-10 fleet was logical and least impactful. (April 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins