Featured Research

from universities, journals, and other organizations

Using data science tools to discover new nanostructured materials

Date:
October 28, 2013
Source:
Columbia University School of Engineering and Applied Science
Summary:
Researchers have developed a new approach to designing novel nanostructured materials through an inverse design framework using genetic algorithms. The study is the first to demonstrate the application of this methodology to the design of self-assembled nanostructures, and could help speed up the materials discovery process. It also shows the potential of machine learning and “big data” approaches.

Phase diagram showing the cluster formations predicted by GA and their validation (squares).
Credit: Columbia Engineering

Researchers at Columbia Engineering, led by Chemical Engineering Professors Venkat Venkatasubramanian and Sanat Kumar, have developed a new approach to designing novel nanostructured materials through an inverse design framework using genetic algorithms. The study, published in the October 28 Early Online edition of Proceedings of the National Academy of Sciences (PNAS), is the first to demonstrate the application of this methodology to the design of self-assembled nanostructures, and shows the potential of machine learning and "big data" approaches embodied in the new Institute for Data Sciences and Engineering at Columbia.

"Our framework can help speed up the materials discovery process," says Venkatasubramanian, Samuel Ruben-Peter G. Viele Professor of Engineering, and co-author of the paper. "In a sense, we are leveraging how nature discovers new materials -- the Darwinian model of evolution -- by suitably marrying it with computational methods. It's Darwin on steroids!"

Using a genetic algorithm they developed, the researchers designed DNA-grafted particles that self-assembled into the crystalline structures they wanted. Theirs was an "inverse" way of doing research. In conventional research, colloidal particles grafted with single-stranded DNA are allowed to self-assemble, and then the resulting crystal structures are examined. "Although this Edisonian approach is useful for a posteriori understanding of the factors that govern assembly," notes Kumar, Chemical Engineering Department Chair and the study's co-author, "it doesn't allow us to a priori design these materials into desired structures. Our study addresses this design issue and presents an evolutionary optimization approach that was not only able to reproduce the original phase diagram detailing regions of known crystals, but also to elucidate previously unobserved structures."

The researchers are using "big data" concepts and techniques to discover and design new nanomaterials -- a priority area under the White House's Materials Genome Initiative -- using a methodology that will revolutionize materials design, impacting a broad range of products that affect our daily lives, from drugs and agricultural chemicals such as pesticides or herbicides to fuel additives, paints and varnishes, and even personal care products such as shampoo.

"This inverse design approach demonstrates the potential of machine learning and algorithm engineering approaches to challenging problems in materials science," says Kathleen McKeown, director of the Institute for Data Sciences and Engineering and Henry and Gertrude Rothschild Professor of Computer Science. "At the Institute, we are focused on pioneering such advances in a number problems of great practical importance in engineering."

Venkatasubramanian adds, "Discovering and designing new advanced materials and formulations with desired properties is an important and challenging problem, encompassing a wide variety of products in industries addressing clean energy, national security, and human welfare." He points out that the traditional Edisonian trial-and-error discovery approach is time-consuming and costly -- it can cause major delays in time-to-market as well as miss potential solutions. And the ever-increasing amount of high-throughput experimentation data, while a major modeling and informatics challenge, has also created opportunities for material design and discovery.

The researchers built upon their earlier work to develop what they call an evolutionary framework for the automated discovery of new materials. Venkatasubramanian proposed the design framework and analyzed the results, and Kumar developed the framework in the context of self-assembled nanomaterials. Babji Srinivasan, a postdoc with Venkatasubramanian and Kumar and now an assistant professor at IIT Gandhinagar, and Thi Vo, a PhD candidate at Columbia Engineering, carried out the computational research. The team collaborated with Oleg Gang and Yugang Zhang of Brookhaven National Laboratory, who carried out the supporting experiments.

The team plans to continue exploring the design space of potential ssDNA-grafted colloidal nanostructures, improving its forward models, and bring in more advanced machine learning techniques. "We need a new paradigm that increases the idea flow, broadens the search horizon, and archives the knowledge from today's successes to accelerate those of tomorrow," says Venkatasubramanian.

This research has been funded by a $1.4 million three-year grant from the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by Columbia University School of Engineering and Applied Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Babji Srinivasan, Thi Vo, Yugang Zhang, Oleg Gang, Sanat Kumar, and Venkat Venkatasubramanian. Designing DNA-grafted particles that self-assemble into desired crystalline structures using the genetic algorithm. PNAS, October 28, 2013 DOI: 10.1073/pnas.1316533110

Cite This Page:

Columbia University School of Engineering and Applied Science. "Using data science tools to discover new nanostructured materials." ScienceDaily. ScienceDaily, 28 October 2013. <www.sciencedaily.com/releases/2013/10/131028184758.htm>.
Columbia University School of Engineering and Applied Science. (2013, October 28). Using data science tools to discover new nanostructured materials. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2013/10/131028184758.htm
Columbia University School of Engineering and Applied Science. "Using data science tools to discover new nanostructured materials." ScienceDaily. www.sciencedaily.com/releases/2013/10/131028184758.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins