Featured Research

from universities, journals, and other organizations

Using data science tools to discover new nanostructured materials

Date:
October 28, 2013
Source:
Columbia University School of Engineering and Applied Science
Summary:
Researchers have developed a new approach to designing novel nanostructured materials through an inverse design framework using genetic algorithms. The study is the first to demonstrate the application of this methodology to the design of self-assembled nanostructures, and could help speed up the materials discovery process. It also shows the potential of machine learning and “big data” approaches.

Phase diagram showing the cluster formations predicted by GA and their validation (squares).
Credit: Columbia Engineering

Researchers at Columbia Engineering, led by Chemical Engineering Professors Venkat Venkatasubramanian and Sanat Kumar, have developed a new approach to designing novel nanostructured materials through an inverse design framework using genetic algorithms. The study, published in the October 28 Early Online edition of Proceedings of the National Academy of Sciences (PNAS), is the first to demonstrate the application of this methodology to the design of self-assembled nanostructures, and shows the potential of machine learning and "big data" approaches embodied in the new Institute for Data Sciences and Engineering at Columbia.

"Our framework can help speed up the materials discovery process," says Venkatasubramanian, Samuel Ruben-Peter G. Viele Professor of Engineering, and co-author of the paper. "In a sense, we are leveraging how nature discovers new materials -- the Darwinian model of evolution -- by suitably marrying it with computational methods. It's Darwin on steroids!"

Using a genetic algorithm they developed, the researchers designed DNA-grafted particles that self-assembled into the crystalline structures they wanted. Theirs was an "inverse" way of doing research. In conventional research, colloidal particles grafted with single-stranded DNA are allowed to self-assemble, and then the resulting crystal structures are examined. "Although this Edisonian approach is useful for a posteriori understanding of the factors that govern assembly," notes Kumar, Chemical Engineering Department Chair and the study's co-author, "it doesn't allow us to a priori design these materials into desired structures. Our study addresses this design issue and presents an evolutionary optimization approach that was not only able to reproduce the original phase diagram detailing regions of known crystals, but also to elucidate previously unobserved structures."

The researchers are using "big data" concepts and techniques to discover and design new nanomaterials -- a priority area under the White House's Materials Genome Initiative -- using a methodology that will revolutionize materials design, impacting a broad range of products that affect our daily lives, from drugs and agricultural chemicals such as pesticides or herbicides to fuel additives, paints and varnishes, and even personal care products such as shampoo.

"This inverse design approach demonstrates the potential of machine learning and algorithm engineering approaches to challenging problems in materials science," says Kathleen McKeown, director of the Institute for Data Sciences and Engineering and Henry and Gertrude Rothschild Professor of Computer Science. "At the Institute, we are focused on pioneering such advances in a number problems of great practical importance in engineering."

Venkatasubramanian adds, "Discovering and designing new advanced materials and formulations with desired properties is an important and challenging problem, encompassing a wide variety of products in industries addressing clean energy, national security, and human welfare." He points out that the traditional Edisonian trial-and-error discovery approach is time-consuming and costly -- it can cause major delays in time-to-market as well as miss potential solutions. And the ever-increasing amount of high-throughput experimentation data, while a major modeling and informatics challenge, has also created opportunities for material design and discovery.

The researchers built upon their earlier work to develop what they call an evolutionary framework for the automated discovery of new materials. Venkatasubramanian proposed the design framework and analyzed the results, and Kumar developed the framework in the context of self-assembled nanomaterials. Babji Srinivasan, a postdoc with Venkatasubramanian and Kumar and now an assistant professor at IIT Gandhinagar, and Thi Vo, a PhD candidate at Columbia Engineering, carried out the computational research. The team collaborated with Oleg Gang and Yugang Zhang of Brookhaven National Laboratory, who carried out the supporting experiments.

The team plans to continue exploring the design space of potential ssDNA-grafted colloidal nanostructures, improving its forward models, and bring in more advanced machine learning techniques. "We need a new paradigm that increases the idea flow, broadens the search horizon, and archives the knowledge from today's successes to accelerate those of tomorrow," says Venkatasubramanian.

This research has been funded by a $1.4 million three-year grant from the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by Columbia University School of Engineering and Applied Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Babji Srinivasan, Thi Vo, Yugang Zhang, Oleg Gang, Sanat Kumar, and Venkat Venkatasubramanian. Designing DNA-grafted particles that self-assemble into desired crystalline structures using the genetic algorithm. PNAS, October 28, 2013 DOI: 10.1073/pnas.1316533110

Cite This Page:

Columbia University School of Engineering and Applied Science. "Using data science tools to discover new nanostructured materials." ScienceDaily. ScienceDaily, 28 October 2013. <www.sciencedaily.com/releases/2013/10/131028184758.htm>.
Columbia University School of Engineering and Applied Science. (2013, October 28). Using data science tools to discover new nanostructured materials. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2013/10/131028184758.htm
Columbia University School of Engineering and Applied Science. "Using data science tools to discover new nanostructured materials." ScienceDaily. www.sciencedaily.com/releases/2013/10/131028184758.htm (accessed August 30, 2014).

Share This




More Matter & Energy News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins