Featured Research

from universities, journals, and other organizations

Breakthrough research produces brighter, more efficiently produced lighting

Date:
October 31, 2013
Source:
University of California - Santa Barbara
Summary:
By determining simple guidelines, researchers have made it possible to optimize phosphors -- a key component in white LED lighting -- allowing for brighter, more efficient lights.

This illustration demonstrates how bright blue LED light, shone through its complementary yellow phosphor, yields white light.
Credit: UCSB

By determining simple guidelines, researchers at UC Santa Barbara's Solid State Lighting & Energy Center (SSLEC) have made it possible to optimize phosphors -- a key component in white LED lighting -- allowing for brighter, more efficient lights.

"These guidelines should permit the discovery of new and improved phosphors in a rational rather than trial-and-error manner," said Ram Seshadri, a professor in the university's Department of Materials as well as in its Department of Chemistry and Biochemistry, of the breakthrough contribution to solid-state lighting research. The results of this research, performed jointly with materials professor Steven DenBaars and postdoctoral associate researcher Jakoah Brgoch, appear in The Journal of Physical Chemistry.

LED (light-emitting diode) lighting has been a major topic of research due to the many benefits it offers over traditional incandescent or fluorescent lighting. LEDs use less energy, emit less heat, last longer and are less hazardous to the environment than traditional lighting. Already utilized in devices such as street lighting and televisions, LED technology is becoming more popular as it becomes more versatile and brighter.

According to Seshadri, all of the recent advances in solid-state lighting have come from devices based on gallium nitride LEDs, a technology that is largely credited to UCSB materials professor Shuji Nakamura, who invented the first high-brightness blue LED. In solid-state white lighting technology, phosphors are applied to the LED chip in such a way that the photons from the blue gallium nitride LED pass through the phosphor, which converts and mixes the blue light into the green-yellow-orange range of light. When combined evenly with the blue, the green-yellow-orange light yields white light.

The notion of multiple colors creating white may seem counterintuitive. With reflective pigments, mixing blue and yellow yields green; however, with emissive light, mixing such complementary colors yields white.

Art to science

Until recently, the preparation of phosphor materials was more an art than a science, based on finding crystal structures that act as hosts to activator ions, which convert the higher-energy blue light to lower-energy yellow/orange light.

"So far, there has been no complete understanding of what make some phosphors efficient and others not," Seshadri said. "In the wrong hosts, some of the photons are wasted as heat, and an important question is: How do we select the right hosts?"

As LEDs become brighter, for example a they are used in vehicle front lights, they also tend to get warmer, and, inevitably, this impacts phosphor properties adversely.

"Very few phosphor materials retain their efficiency at elevated temperatures," Brgoch said. "There is little understanding of how to choose the host structure for a given activator ion such that the phosphor is efficient, and such that the phosphor efficiency is retained at elevated temperatures."

However, using calculations based on density functional theory, which was developed by UCSB professor and 1998 Nobel Laureate Walter Kohn, the researchers have determined that the rigidity of the crystalline host structure is a key factor in the efficiency of phosphors: The better phosphors possess a highly rigid structure. Furthermore, indicators of structural rigidity can be computed using density functional theory, allowing materials to be screened before they are prepared and tested.

This breakthrough puts efforts for high-efficiency, high-brightness, solid-state lighting on a fast track. Lower-efficiency incandescent and fluorescent bulbs -- which use relatively more energy to produce light -- could become antiquated fixtures of the past.

"Our target is to get to 90 percent efficiency, or 300 lumens per watt," said DenBaars, who also is a professor of electrical and computer engineering and co-director of the SSLEC. Current incandescent light bulbs, by comparison, are at roughly 5 percent efficiency, and fluorescent lamps are a little more efficient at about 20 percent.

"We have already demonstrated up to 60 percent efficiency in lab demos," DenBaars said.


Story Source:

The above story is based on materials provided by University of California - Santa Barbara. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Santa Barbara. "Breakthrough research produces brighter, more efficiently produced lighting." ScienceDaily. ScienceDaily, 31 October 2013. <www.sciencedaily.com/releases/2013/10/131031090435.htm>.
University of California - Santa Barbara. (2013, October 31). Breakthrough research produces brighter, more efficiently produced lighting. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2013/10/131031090435.htm
University of California - Santa Barbara. "Breakthrough research produces brighter, more efficiently produced lighting." ScienceDaily. www.sciencedaily.com/releases/2013/10/131031090435.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins