Featured Research

from universities, journals, and other organizations

Physicists take an atomic-level peek at unexpected behavior in multilayered structures

Date:
October 31, 2013
Source:
University of Arkansas, Fayetteville
Summary:
A new class of materials may influence the next generation of nano-devices, in which integrated circuits are composed of many layers of dissimilar materials.

Cross-sectional image of the multilayer structure on nanoscale.
Credit: Image courtesy of University of Arkansas, Fayetteville

A new class of materials developed at the University of Arkansas may influence the next generation of nano-devices, in which integrated circuits are composed of many layers of dissimilar materials, such as ferromagnetic and superconducting oxides.

Related Articles


The researchers used innovative cross-sectional scanning tunneling microscopy and spectroscopy at the U.S. Department of Energy's Argonne Center for Nanoscale Materials to develop the first direct view of the physical and chemical behavior of electrons and atoms at boundary regions within the dissimilar materials.

"The fundamental issue here is that conventional modern day electronics based on silicon is very problematic to operate on a nanometer scale," said Jak Chakhalian, professor of physics in the J. William Fulbright College of Arts and Sciences at the University of Arkansas. "Integrated circuits have many, many layers of functional material. As layers get thinner, the materials start behaving strangely and often unreliably. Now the question of the size of the interface, where two materials 'talk' to each other or influence each other, becomes critical."

An article detailing the finding, "Visualizing short-range charter transfer at the interfaces between ferromagnetic and superconducting oxides" was published Aug. 13 in the online journal Nature Communications.

Te Yu Chien, a former postdoctoral research associate at the university, developed a technique at the Advanced Photon Source at Argonne to help Chakhalian's research group with an easy way of looking directly at the interfaces between two dissimilar oxides.

"That was the breakthrough," Chakhalian said. "He found the 'knife' that would cut through the multilayered 'sandwich.' Previously, it was extremely difficult, if not impossible, to look inside the layered complex oxide nanomaterial that we had developed here in our lab because they fractured when they were cut.

Chien's technique provided the researchers with crucial information: Not only do the atomic layers talk to each other, but they also deeply influence each other on a one- to two-nanometer scale.

"We learned that in our materials, the layers strongly influence each other," Chakhalian said. "For the first time, we showed how electrons and ions interact on the atomic scale in those complex multilayered structures, and it was not what a lot of people expected. This is fantastic. So now we can have beautiful control of these materials on the atomic scale obtained right at the interface, which defines the properties of those materials."

Chakhalian holds the Charles E. and Clydene Scharlau Endowed Professorship and directs the Laboratory for Artificial Quantum Materials at the University of Arkansas.

The results were obtained by a collaborative effort with John W. Freeland of the Advanced Photon Source and Nathan P. Guisinger of the Center for Nanoscale Materials, both at Argonne National Lab outside Chicago; and Lena F. Kourkoutis and David A. Muller at the Kavli Institute at Cornell for Nanoscale Science in Ithaca, N.Y.


Story Source:

The above story is based on materials provided by University of Arkansas, Fayetteville. Note: Materials may be edited for content and length.


Journal Reference:

  1. Te Yu Chien, Lena F. Kourkoutis, Jak Chakhalian, Benjamin Gray, Michael Kareev, Nathan P. Guisinger, David A. Muller, John W. Freeland. Visualizing short-range charge transfer at the interfaces between ferromagnetic and superconducting oxides. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3336

Cite This Page:

University of Arkansas, Fayetteville. "Physicists take an atomic-level peek at unexpected behavior in multilayered structures." ScienceDaily. ScienceDaily, 31 October 2013. <www.sciencedaily.com/releases/2013/10/131031124723.htm>.
University of Arkansas, Fayetteville. (2013, October 31). Physicists take an atomic-level peek at unexpected behavior in multilayered structures. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2013/10/131031124723.htm
University of Arkansas, Fayetteville. "Physicists take an atomic-level peek at unexpected behavior in multilayered structures." ScienceDaily. www.sciencedaily.com/releases/2013/10/131031124723.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins