Featured Research

from universities, journals, and other organizations

What water looks like to DNA

Date:
November 19, 2013
Source:
American Institute of Physics (AIP)
Summary:
Biochemists and mathematicians have developed a sophisticated geometric model to predict how a biological molecule will interact with water molecules, computing the results up to 20 times faster than other existing approaches. This new approach may help researchers find new drugs to treat human diseases.

Snapshots from numerical relaxation of the two-plate system. A red region indicates the solute region without solvent.
Credit: Reproduced from The Journal of Chemical Physics, DOI:10.1063/1.4812839

A team of biochemists and mathematicians have developed a sophisticated geometric model to predict how a biological molecule will interact with water molecules, computing the results up to 20 times faster than other existing approaches. This new approach may help researchers find new drugs to treat human diseases, said the team, who described their theoretical approach in The Journal of Chemical Physics, which is produced by AIP Publishing.

Related Articles


"Our research explores how water can change the shape of a molecule, how different molecules can get along well in water and, ultimately, how drug molecules can hit targets with the help of water," says Bo Li, professor of mathematics and senior scientist, National Science Foundation Center for Theoretical Biological Physics, University of California, San Diego.

Biological molecules such as DNA and proteins are the building blocks of living systems, and each molecule consists of many atoms. "How these molecules self-organize is crucial to maintaining a healthy system, because a missing or deformed atom within a molecule can lead to disease," explained Li.

The human body contains numerous biological molecules, many of which are surrounded by water, which can help change their shape and affect how they interact with other molecules in the body. Up to 60 percent of the human body is water, so it's essential that this solvent be considered.

"Many biological molecules are hydrophobic (water repelling), just like a drop of oil in water, but when mixed they will eventually blend together," said Li.

Being able to quickly predict the structure of biological molecules in water by using this new theoretical approach should help improve the ability of researchers to identify new targets and may reduce the need for expensive screening of millions of drug molecules in labs.

This work is part of a joint research program initiated in the lab of J. Andrew McCammon, Joseph E. Mayer Professor of Theoretical Chemistry, Distinguished Professor of Pharmacology, and Howard Hughes Medical Institute (HHMI), University of California, San Diego, and has been supported by a grant from the National Institutes of Health and HHMI.


Story Source:

The above story is based on materials provided by American Institute of Physics (AIP). Note: Materials may be edited for content and length.


Journal Reference:

  1. Yanxiang Zhao, Yuen-Yick Kwan, Jianwei Che, Bo Li, J. Andrew McCammon. Phase-field approach to implicit solvation of biomolecules with Coulomb-field approximation. The Journal of Chemical Physics, 2013; 139 (2): 024111 DOI: 10.1063/1.4812839

Cite This Page:

American Institute of Physics (AIP). "What water looks like to DNA." ScienceDaily. ScienceDaily, 19 November 2013. <www.sciencedaily.com/releases/2013/11/131119152818.htm>.
American Institute of Physics (AIP). (2013, November 19). What water looks like to DNA. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/2013/11/131119152818.htm
American Institute of Physics (AIP). "What water looks like to DNA." ScienceDaily. www.sciencedaily.com/releases/2013/11/131119152818.htm (accessed January 29, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

RightThisMinute (Jan. 29, 2015) — If your car has an "Insane Mode" then you know it&apos;s fast. Well, these unsuspecting passengers were in for one insane ride when they hit the button. Tesla cars are awesome. Video provided by RightThisMinute
Powered by NewsLook.com
Now Bill Gates Is 'Concerned' About Artificial Intelligence

Now Bill Gates Is 'Concerned' About Artificial Intelligence

Newsy (Jan. 29, 2015) — Bill Gates joins the list of tech moguls scared of super-intelligent machines. He says more people should be concerned, but why? Video provided by Newsy
Powered by NewsLook.com
Two Stunt Pilots Perform Incredibly Close Flyby

Two Stunt Pilots Perform Incredibly Close Flyby

Rumble (Jan. 29, 2015) — Two pilots from &apos;Escuadrilla Argentina de Acrobacia Aιrea&apos; perform an incredibly low altitude flyby stunt during a recent show exhibition in Argentina. Check it out! Video provided by Rumble
Powered by NewsLook.com
Super Bowl Declared A 'No Drone Zone'

Super Bowl Declared A 'No Drone Zone'

Newsy (Jan. 29, 2015) — The Federal Aviation Administration listed drones among the aircraft banned from the airspace around University of Phoenix Stadium for the Super Bowl. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins