Featured Research

from universities, journals, and other organizations

New thermoelectronic generator: Heat energy efficiently converted to electricity

Date:
December 3, 2013
Source:
American Institute of Physics (AIP)
Summary:
Through a process known as thermionic conversion, heat energy can be converted into electricity with very high efficiency. Because of its promise, researchers have been trying for more than half a century to develop a practical thermionic generator, with little luck. That luck may soon change, thanks to a new design -- dubbed a thermoelectronic generator.

The hot test generator in action.
Credit: J.Mannhart/MPG.de

Through a process known as thermionic conversion, heat energy -- such as light from the sun or heat from burned fossil fuels -- can be converted into electricity with very high efficiency. Because of its promise, researchers have been trying for more than half a century to develop a practical thermionic generator, with little luck. That luck may soon change, thanks to a new design -- dubbed a thermoelectronic generator -- described in AIP Publishing's Journal of Renewable and Sustainable Energy (JRSE).

Thermionic generators use the temperature difference between a hot and a cold metallic plate to create electricity. "Electrons are evaporated or kicked out by light from the hot plate, then driven to the cold plate, where they condense," explained experimental solid-state physicist Jochen Mannhart of the Max Planck Institute for Solid State Research in Stuttgart, Germany, the lead author of the JRSE paper. The resulting charge difference between the two plates yields a voltage that, in turn, drives an electric current, "without moving mechanical parts," he said.

Previous models of thermionic generators have proven ineffectual because of what is known as the "space-charge problem," in which the negative charges of the cloud of electrons leaving the hot plate repel other electrons from leaving it too, effectively killing the current. Mannhart, along with his former students Stefan Meir and Cyril Stephanos, and colleague Theodore Geballe of Stanford University, circumvented this problem using an electric field to pull the charge cloud away from the hot plate, which allowed electrons to fly to the cold plate.

"Practical thermionic generators have reached efficiencies of about 10 percent. The theoretical predictions for our thermoelectronic generators reach about 40 percent, although this is theory only," noted Mannhart. "We would be much surprised if there was a commercial application in the marketplace within the next five years, but if companies that are hungry for power recognize the potential of the generators, the development might be faster."


Story Source:

The above story is based on materials provided by American Institute of Physics (AIP). Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Meir, C. Stephanos, T. H. Geballe, J. Mannhart. Highly-efficient thermoelectronic conversion of solar energy and heat into electric power. Journal of Renewable and Sustainable Energy, 2013; 5 (4): 043127 DOI: 10.1063/1.4817730

Cite This Page:

American Institute of Physics (AIP). "New thermoelectronic generator: Heat energy efficiently converted to electricity." ScienceDaily. ScienceDaily, 3 December 2013. <www.sciencedaily.com/releases/2013/12/131203105935.htm>.
American Institute of Physics (AIP). (2013, December 3). New thermoelectronic generator: Heat energy efficiently converted to electricity. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2013/12/131203105935.htm
American Institute of Physics (AIP). "New thermoelectronic generator: Heat energy efficiently converted to electricity." ScienceDaily. www.sciencedaily.com/releases/2013/12/131203105935.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins