Featured Research

from universities, journals, and other organizations

Thermoelectric materials nearing production scale

Date:
December 5, 2013
Source:
Fraunhofer-Gesellschaft
Summary:
Half-Heusler compounds are especially suited for manufacturing thermoelectric modules. Waste heat can be converted to electricity with them. Researchers have manufactured the alloys for the first time in kilogram quantities.

The individual components of thermoelectric modules are only a few millimeters in size. They are cut from specific alloys – such as half-Heusler compounds.
Credit: © Fraunhofer IPM

Half-Heusler compounds are especially suited for manufacturing thermoelectric modules. Waste heat can be converted to electricity with them. Researchers have manufactured the alloys for the first time in kilogram quantities.

More than two-thirds of the energy from primary sources like oil and gas utilized worldwide today is lost through waste heat. Thermoelectric modules in power plants, industrial or heating systems, as well as in automobiles can make use of part of this. Thermoelectric devices harvest electrical power from temperature differences. For example, if inte- grated in the exhaust system of an auto, such a module could use the waste heat for electrical power generation and take some of the load off the alternator. "In view of the continually stricter environmental regulations of the EU, this can also be of interest to the automobile manufacturers," according to Dr. Kilian Bartholomé from the Fraunhofer Institute for Physical Measurement Techniques IPM in Freiburg, Germany.

Even though the fundamental principles have been known for almost 200 years, most of the technology is still at an elementary stage. Efficient manufacturing processes and suitable materials are still needed. IPM has succeeded in making a big jump in development. The researchers have shown that half-Heusler compounds -- which are highly suitable ma- terials for thermoelectric processes -- can be produced significantly more efficiently and cost-effectively than has been previously possible. They are collaborating with Robert Bosch GmbH, the Institut für Anorganische Chemie und Analytische Chemie (Institute for Inorganic and Analytical Chemistry) at Johannes-Gutenberg-Universität Mainz, Vacuum-schmelze GmbH (vacuum smelter works) in Hanau and Isabellenhütte Heusler GmbH (smelting and foundry works) in Dillenburg on the "thermoHEUSLER" Project, supported by the German Federal Ministry of Economics and Technology (BMWi).

"Half-Heusler compounds are highly suitable for thermoelectric applications. They fulfill -- almost -- all of the necessary criteria," explains Project Director Dr. Benjamin Balke, an expert in materials development at University Mainz. "The alloys consist of a wide range of materials, nickel being one, and are much more environmentally friendly than previous materials, possess good thermoelectric properties, and withstand high temperatures."

Efficient material produced in kilogram quantities

Engineers characterize thermoelectric suitability by the "ZT value." Industry requires ZT values greater than one. The partners in the thermoHEUSLER Project have now achieved a value of 1.2. "That corresponds to the best published values for half-Heusler compounds thus far," says Bartholomé. It is crucial for industrial applications to attain the efficiency values during mass production that were obtained in the lab. During the thermoHEUSLER Project, Vacuumschmelze and Isabellenhütte have successfully manufactured this very efficient half-Heusler material in kilogram quantities for the first time. The alloys synthesized by them result from a long tradition: the German mining engineer, chemist, and namesake of the compound, Friedrich Heusler, was head of Isabellenhütte Heusler GmbH at one time.

Thermoelectric modules are assembled from blocks a few millimeters each in size. These consist of two different types of thermoelectric materials, N-type and P-type. A critical aspect for the efficiency of the modules is the design of their electrical contacts. These need to withstand large temperature differences, yet at the same time keep the electrical resistance as small as possible. This is exactly what the scientists have accomplished in the thermoHEUSLER Project by using a specially developed soldering system.

Various international consortia have shown that thermoelectric modules can contribute to energy efficiency in automobiles. Prototypes have already created up to 600 watts of electrical power from the waste heat in the exhaust system of an auto. "There were almost 60 million motor vehicles registered in Germany at the beginning of the year. If all of these were equipped with small thermoelectric power plants in the exhaust systems, energy on the order of the amount produced annually by a nuclear power plant could theoretically be saved today," according to Bartholomé. "That corresponds to a savings of several million tons of C02."


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Thermoelectric materials nearing production scale." ScienceDaily. ScienceDaily, 5 December 2013. <www.sciencedaily.com/releases/2013/12/131205092057.htm>.
Fraunhofer-Gesellschaft. (2013, December 5). Thermoelectric materials nearing production scale. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2013/12/131205092057.htm
Fraunhofer-Gesellschaft. "Thermoelectric materials nearing production scale." ScienceDaily. www.sciencedaily.com/releases/2013/12/131205092057.htm (accessed August 23, 2014).

Share This




More Matter & Energy News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is It a Plane? No, It's a Hoverbike

Is It a Plane? No, It's a Hoverbike

Reuters - Business Video Online (Aug. 22, 2014) — UK-based Malloy Aeronautics is preparing to test a manned quadcopter capable of out-manouvering a helicopter and presenting a new paradigm for aerial vehicles. A 1/3-sized scale model is already gaining popularity with drone enthusiasts around the world, with the full-sized manned model expected to take flight in the near future. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Coal Gas Boom in China Holds Climate Risks

Coal Gas Boom in China Holds Climate Risks

AP (Aug. 22, 2014) — China's energy revolution could do more harm than good for the environment, despite the country's commitment to reducing pollution and curbing its carbon emissions. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Newsy (Aug. 21, 2014) — Researchers found the scanners could be duped simply by placing a weapon off to the side of the body or encasing it under a plastic shield. Video provided by Newsy
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins