Science News
from research organizations

Fighting antibiotic-resistant bacteria: Target human cells instead

Date:
December 11, 2013
Source:
American Chemical Society
Summary:
As more reports appear of a grim "post-antibiotic era" ushered in by the rise of drug-resistant bacteria, a new strategy for fighting infection is emerging that targets a patient's cells rather than those of the invading pathogens. The technique interferes with the way that the pathogens take over a patient's cells to cause infection. This approach could help address the world's growing problem of antibiotic-resistant "super bugs."
Share:
       
FULL STORY

As more reports appear of a grim "post-antibiotic era" ushered in by the rise of drug-resistant bacteria, a new strategy for fighting infection is emerging that targets a patient's cells rather than those of the invading pathogens. The technique interferes with the way that the pathogens take over a patient's cells to cause infection. This approach, published in the journal ACS Chemical Biology, could help address the world's growing problem of antibiotic-resistant "super bugs."

Huib Ovaa, Jacques Neefjes and colleagues explain that the problem of antibiotic-resistant bacteria poses a major public health threat. Health organizations have warned that unless alternatives to classic antibiotics are developed, even infections from minor scrapes could become deadly. Pharmaceutical companies are working on only a few new antibiotics, and they all take the same approach -- attack the bacteria. But resistance is always a possibility. To get around this, researchers are now looking more closely at how bacteria co-opt the cells they invade for survival. These researchers previously reported that at least one set of host cell proteins, called kinases, can control bacterial growth. Ovaa and Neefjes' team decided to look at another class of proteins, called phosphatases, that act in the opposite way from kinases to see if inhibiting them would have a similar effect.

In lab tests, they identified phosphatases in human cells that are involved in bacterial survival. They also identified small molecules, or potential drugs, that could stop those phosphatases from working. Those molecules, which could form a new class of antibiotics, successfully stopped Salmonella, their test bacteria, from growing. Because this approach jams the host cell machinery rather than directly attacking the bacteria, the chances of bacteria developing resistance could be very low, say the researchers. They also say that the research shows that phosphatases, like kinases, could be general targets for drug development.


Story Source:

The above post is reprinted from materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Journal Reference:

  1. Harald M. H. G. Albers, Coenraad Kuijl, Jeroen Bakker, Loes Hendrickx, Sharida Wekker, Nadha Farhou, Nora Liu, Bernat Blasco-Moreno, Tiziana Scanu, Jeroen den Hertog, Patrick Celie, Huib Ovaa, Jacques Neefjes. Integrating Chemical and Genetic Silencing Strategies To Identify Host Kinase-Phosphatase Inhibitor Networks That Control Bacterial Infection. ACS Chemical Biology, 2013; 131125093526007 DOI: 10.1021/cb400421a

Cite This Page:

American Chemical Society. "Fighting antibiotic-resistant bacteria: Target human cells instead." ScienceDaily. ScienceDaily, 11 December 2013. <www.sciencedaily.com/releases/2013/12/131211131822.htm>.
American Chemical Society. (2013, December 11). Fighting antibiotic-resistant bacteria: Target human cells instead. ScienceDaily. Retrieved September 3, 2015 from www.sciencedaily.com/releases/2013/12/131211131822.htm
American Chemical Society. "Fighting antibiotic-resistant bacteria: Target human cells instead." ScienceDaily. www.sciencedaily.com/releases/2013/12/131211131822.htm (accessed September 3, 2015).

Share This Page: