Featured Research

from universities, journals, and other organizations

Fighting antibiotic-resistant bacteria: Target human cells instead

Date:
December 11, 2013
Source:
American Chemical Society
Summary:
As more reports appear of a grim "post-antibiotic era" ushered in by the rise of drug-resistant bacteria, a new strategy for fighting infection is emerging that targets a patient's cells rather than those of the invading pathogens. The technique interferes with the way that the pathogens take over a patient's cells to cause infection. This approach could help address the world's growing problem of antibiotic-resistant "super bugs."

As more reports appear of a grim "post-antibiotic era" ushered in by the rise of drug-resistant bacteria, a new strategy for fighting infection is emerging that targets a patient's cells rather than those of the invading pathogens. The technique interferes with the way that the pathogens take over a patient's cells to cause infection. This approach, published in the journal ACS Chemical Biology, could help address the world's growing problem of antibiotic-resistant "super bugs."

Huib Ovaa, Jacques Neefjes and colleagues explain that the problem of antibiotic-resistant bacteria poses a major public health threat. Health organizations have warned that unless alternatives to classic antibiotics are developed, even infections from minor scrapes could become deadly. Pharmaceutical companies are working on only a few new antibiotics, and they all take the same approach -- attack the bacteria. But resistance is always a possibility. To get around this, researchers are now looking more closely at how bacteria co-opt the cells they invade for survival. These researchers previously reported that at least one set of host cell proteins, called kinases, can control bacterial growth. Ovaa and Neefjes' team decided to look at another class of proteins, called phosphatases, that act in the opposite way from kinases to see if inhibiting them would have a similar effect.

In lab tests, they identified phosphatases in human cells that are involved in bacterial survival. They also identified small molecules, or potential drugs, that could stop those phosphatases from working. Those molecules, which could form a new class of antibiotics, successfully stopped Salmonella, their test bacteria, from growing. Because this approach jams the host cell machinery rather than directly attacking the bacteria, the chances of bacteria developing resistance could be very low, say the researchers. They also say that the research shows that phosphatases, like kinases, could be general targets for drug development.


Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Journal Reference:

  1. Harald M. H. G. Albers, Coenraad Kuijl, Jeroen Bakker, Loes Hendrickx, Sharida Wekker, Nadha Farhou, Nora Liu, Bernat Blasco-Moreno, Tiziana Scanu, Jeroen den Hertog, Patrick Celie, Huib Ovaa, Jacques Neefjes. Integrating Chemical and Genetic Silencing Strategies To Identify Host Kinase-Phosphatase Inhibitor Networks That Control Bacterial Infection. ACS Chemical Biology, 2013; 131125093526007 DOI: 10.1021/cb400421a

Cite This Page:

American Chemical Society. "Fighting antibiotic-resistant bacteria: Target human cells instead." ScienceDaily. ScienceDaily, 11 December 2013. <www.sciencedaily.com/releases/2013/12/131211131822.htm>.
American Chemical Society. (2013, December 11). Fighting antibiotic-resistant bacteria: Target human cells instead. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2013/12/131211131822.htm
American Chemical Society. "Fighting antibiotic-resistant bacteria: Target human cells instead." ScienceDaily. www.sciencedaily.com/releases/2013/12/131211131822.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins