Featured Research

from universities, journals, and other organizations

How hypergravity impacts electric arcs

Date:
December 18, 2013
Source:
Springer Science+Business Media
Summary:
A new study on electric discharge behavior under intense gravitational forces shows that its dynamic changes as gravity increases. Arc discharges are common in everyday conditions like welding or in lightning storms. But in altered gravity, not as much is known about the behavior of electric discharges.

A new study on electric discharge behaviour under intense gravitational forces shows that its dynamic changes as gravity increases.

Arc discharges are common in everyday conditions like welding or in lightning storms. But in altered gravity, not as much is known about the behaviour of electric discharges. For the first time, Jiří Šperka from Masaryk University, Czech Republic, and his Dutch colleagues studied the behaviour of a special type of arc discharge, so-called glide arc, in varying hypergravity conditions, up to 18 G. In a paper just published in The European Physical Journal D, they demonstrate how the plasma channel of this glide arc discharge moves due to external forces of buoyancy in varying gravity conditions. These results could have implications for improved safety precautions in manned space flights, and in the design of ion thrusters used for spacecraft propulsion.

Though electric discharges can be affected by gravity, the electromagnetic forces between charged particles are typically much stronger than any gravitational forces. Therefore, in order to understand this effect, the authors designed an experimental device to perform measurements on atmospheric pressure glide arc helium plasma under the forces of hypergravity.

They changed the buoyancy force acting on the plasma channel of the glide arc while maintaining a constantly low external gas flow. To do so they relied on the Large Diameter Centrifuge at the European Space Agency's European space research and technology centre (ESTEC) facility in Noordwijk, the Netherlands.

They found that gravity strongly influences the glide arc discharge. These effects stem from thermal buoyancy, which increases with gravity. As such, increasing the centrifugal acceleration of gravity makes the glide arc movement substantially faster. Whereas at 1 G the discharge was stationary, at 6 G it glides with 7 Hz frequency and at 18 G that number rises to 11 Hz. The authors thus established a simple model for the glide arc movement assuming low gas flow velocities, which they validated with experimental results.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jiří Šperka, Pavel Souček, Jack J. W. A. Loon, Alan Dowson, Christian Schwarz, Jutta Krause, Gerrit Kroesen, Vít Kudrle. Hypergravity effects on glide arc plasma. The European Physical Journal D, 2013; 67 (12) DOI: 10.1140/epjd/e2013-40408-7

Cite This Page:

Springer Science+Business Media. "How hypergravity impacts electric arcs." ScienceDaily. ScienceDaily, 18 December 2013. <www.sciencedaily.com/releases/2013/12/131218095849.htm>.
Springer Science+Business Media. (2013, December 18). How hypergravity impacts electric arcs. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2013/12/131218095849.htm
Springer Science+Business Media. "How hypergravity impacts electric arcs." ScienceDaily. www.sciencedaily.com/releases/2013/12/131218095849.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) — A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) — Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) — Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins