Featured Research

from universities, journals, and other organizations

Mechanism of genetic mutations known to cause familial Alzheimer's disease uncovered

Date:
January 10, 2014
Source:
Rensselaer Polytechnic Institute (RPI)
Summary:
New research has solved one mystery in the development of Familial Alzheimer’s Disease (FAD), a genetic variant of the disease that affects a small fraction of the Alzheimer’s population. Researchers followed the trail of two genetic mutations – V44M and V44A – known to cause FAD, and have shown how the mutations lead to biochemical changes long linked to the disease.

New research, led by Rensselaer Polytechnic Institute researcher Chunyu Wang, has solved one mystery in the development of Familial Alzheimer's Disease (FAD), a genetic variant of the disease that affects a small fraction of the Alzheimer's population. In a paper published online January 6 in the journal Nature Communications, Wang and his team follow the trail of two genetic mutations -- V44M and V44A -- known to cause FAD, and show how the mutations lead to biochemical changes long linked to the disease.

Related Articles


The hallmark of FAD is the accumulation of the Amyloid Beta 42 peptide (a short chain of amino acids) in unusually high concentrations within the brain. In a healthy brain, Amyloid Beta-42 (Aβ42) and a similar peptide, Amyloid Beta-40 (Aβ40), are found in a ratio of about 1 to 9. In a brain affected by FAD, this ratio is much higher. The two peptides are nearly identical: Aβ40 is a chain of 40 amino acids in length; Aβ42 is 42 amino acids in length. However, Aβ42 is much more toxic to neurons and plays a critical role in memory failure.

"The mutations that cause FAD lead to an increased ratio of Aβ42 over Aβ40," said Wang, an associate professor of biological sciences within the School of Science, director of the biochemistry and biophysics graduate program, and member of the Rensselaer Center for Biotechnology and Interdisciplinary Studies, who co-wrote the paper with Wen Chen, who recently earned his doctorate at Rensselaer. "That's the biochemistry, and that has been observed by many people. But the question we asked is: how? How do the mutations lead to this increased ratio?"

There are hundreds of known genetic mutations linked to FAD, but they are all related to the processing of a large protein, the amyloid precursor protein (APP), which starts its life partially embedded in the cell membrane of brain cells, and is later cut into several pieces, one of which becomes either Aβ42 or Aβ40.

In a multi-step process, enzymes make several cuts to APP, and the location of the cuts dictates whether a resulting snippet of APP becomes Aβ42 or Aβ40. If an enzyme, γ-secretase, makes an initial cut at an amino acid within APP called Threonine 48 (T48), the remaining cuts result in Aβ42, whereas if the first cut is made at amino acid Leucine 49, the process will result in Aβ40.

Wang's team used solution nuclear magnetic resonance spectroscopy to study the three-dimensional structure and dynamics of the transmembrane portion of APP affected by the two genetic mutations, and they discovered that the mutations cause a critical change to the T48 amino acid. That change makes it more likely that γ-secretase will prefer a cut at T48, leading to production of Aβ42, and increased concentrations of Aβ42 found in the brains of patients with FAD.

"The basic idea is that -- in the mutated versions -- this site, T48, becomes more open, more accessible to γ-secretase," said Wang. "What we found is that the FAD mutation basically opens up the T-48 site, which makes it more likely for γ-secretase to produce Aβ42 peptide."


Story Source:

The above story is based on materials provided by Rensselaer Polytechnic Institute (RPI). Note: Materials may be edited for content and length.


Journal Reference:

  1. Wen Chen, Eric Gamache, David J. Rosenman, Jian Xie, Maria M. Lopez, Yue-Ming Li, Chunyu Wang. Familial Alzheimer’s mutations within APPTM increase Aβ42 production by enhancing accessibility of ε-cleavage site. Nature Communications, 2014; 5 DOI: 10.1038/ncomms4037

Cite This Page:

Rensselaer Polytechnic Institute (RPI). "Mechanism of genetic mutations known to cause familial Alzheimer's disease uncovered." ScienceDaily. ScienceDaily, 10 January 2014. <www.sciencedaily.com/releases/2014/01/140110113540.htm>.
Rensselaer Polytechnic Institute (RPI). (2014, January 10). Mechanism of genetic mutations known to cause familial Alzheimer's disease uncovered. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2014/01/140110113540.htm
Rensselaer Polytechnic Institute (RPI). "Mechanism of genetic mutations known to cause familial Alzheimer's disease uncovered." ScienceDaily. www.sciencedaily.com/releases/2014/01/140110113540.htm (accessed October 24, 2014).

Share This



More Mind & Brain News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Academic Scandal Shocks UNC

Academic Scandal Shocks UNC

AP (Oct. 23, 2014) A scandal involving bogus classes and inflated grades at the University of North Carolina was bigger than previously reported, a new investigation found. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Working Mother Getaway: Beaches Turks & Caicos

Working Mother Getaway: Beaches Turks & Caicos

Working Mother (Oct. 22, 2014) Feast your eyes on this gorgeous family-friendly resort. Video provided by Working Mother
Powered by NewsLook.com
What Your Favorite Color Says About You

What Your Favorite Color Says About You

Buzz60 (Oct. 22, 2014) We all have one color we love to wear, and believe it or not, your color preference may reveal some of your character traits. In celebration of National Color Day, Krystin Goodwin (@kyrstingoodwin) highlights what your favorite colors may say about you. Video provided by Buzz60
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins