Featured Research

from universities, journals, and other organizations

Viewing macro behaviors of ultra-cold quantum gases through the micro-world

Date:
January 13, 2014
Source:
ICFO-The Institute of Photonic Sciences
Summary:
Scientists have been able to observed, for the first time, the collective spin dynamics of ultra-cold fermions with large spins.

Understanding collective behavior of ultra-cold quantum gases is of great interest since it is intimately related to many encountered systems in nature such as human behavior, swarms of birds, traffic jam, sand dunes, neutron stars, fundamental magnetic properties of solids, or even super-fluidity or super-conductivity. In all of these everyday life examples, collective behavior plays a crucial role since all participating objects move, voluntarily or not, synchronously.

In a recent study coordinated by the Institute of Laser Physics, University of Hamburg -- Germany, in collaboration with ICFO -- the Institute of Photonic Sciences, researchers have observed, for the first time, the collective spin dynamics of ultra-cold fermions by analyzing the microscopic properties of the particles through their local collisions. The researchers were able to observe that at very low temperatures, close to absolute zero, the individual properties of each particle team up and behave coherently as a single identity in spin space. The results obtained from this study have recently been published in Science.

The "super" behavior of matter is actually a macro manifestation of the micro-laws of quantum mechanics. In the quantum micro-world, particles are divided into two main groups: bosons (e.g. photons) and fermions (e.g. constituents of matter such as electrons, protons, neutrons). The difference between these particles is basically their spin: bosons have integer spins and fermions have half-integer spins. Bosons behave collectively in spin rotation since they like to bundle up as friends and go with the flow. In the case of fermions, scientists did not know, up to now, whether these particles could behave the same way since they apparently are loners in this world.

Even more, if an atomic gas is cooled down to extremely low temperatures, bosons present the characteristics that many of them can occupy the same quantum state -- they constitute a Bose condensate. In contrast, fermions have the particular characteristic of having only one particle per single state occupied, according to Pauli's exclusion principle.

To obtain ultra-cold fermions, the researchers trapped, via the use of a laser light, a quantum degenerate gas containing potassium atoms, cooled it down to very low temperatures and prepared different spin mixtures at very low magnetic fields to induce spin-changing dynamics. They were able to observe that when particles with very high spins collide between each other in local interactions, the resulting individual spins change. However, as a whole, they behave in a collective manner stabilizing the gas through long-lived, large-amplitude spin oscillations.

Hence, the research group led by ICREA Professor at ICFO Dr. Maciej Lewenstein came up with a novel effective theory that could explain correctly the experiment and discovered that the collective behavior is a quantum phenomenon which is very sensitive to perturbations (e.g. the effect completely disappears with a very slight change in the temperature). As Maciej Lewenstein states, "Fermions, due to Pauli's principle, are "individualists" -- they do not like to behave in a same way. Nevertheless, here they team up to exhibit amazingly robust collective behavior. "

Through the controlled interplay of different fundamental processes that either stimulate or suppress the collective behavior, scientists are being able to have an in-depth understanding of the model system at work and therefore seek new pathways to study yet inaccessible exotic phenomena such as the creation of topological structures and textures in degenerate quantum gases with high spin or future applications such as quantum sensors for the smallest magnetic fields possible.


Story Source:

The above story is based on materials provided by ICFO-The Institute of Photonic Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. S. Krauser, U. Ebling, N. Flaschner, J. Heinze, K. Sengstock, M. Lewenstein, A. Eckardt, C. Becker. Giant Spin Oscillations in an Ultracold Fermi Sea. Science, 2014; 343 (6167): 157 DOI: 10.1126/science.1244059

Cite This Page:

ICFO-The Institute of Photonic Sciences. "Viewing macro behaviors of ultra-cold quantum gases through the micro-world." ScienceDaily. ScienceDaily, 13 January 2014. <www.sciencedaily.com/releases/2014/01/140113100909.htm>.
ICFO-The Institute of Photonic Sciences. (2014, January 13). Viewing macro behaviors of ultra-cold quantum gases through the micro-world. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2014/01/140113100909.htm
ICFO-The Institute of Photonic Sciences. "Viewing macro behaviors of ultra-cold quantum gases through the micro-world." ScienceDaily. www.sciencedaily.com/releases/2014/01/140113100909.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins