Featured Research

from universities, journals, and other organizations

Highly reliable brain-imaging protocol identifies delays in premature infants

Date:
January 25, 2014
Source:
Nationwide Children's Hospital
Summary:
Infants born prematurely are at elevated risk for cognitive, motor, and behavioral deficits -- the severity of which was, until recently, almost impossible to accurately predict in the neonatal period with conventional brain-imaging technology. But physicians may now be able to identify the premature infants most at risk for deficits as well as the type of deficit, enabling them to quickly initiate early neuroprotective therapies, by using highly reliable 3-D MRI imaging techniques developed by clinician scientists.

Infants born prematurely are at elevated risk for cognitive, motor, and behavioral deficits -- the severity of which was, until recently, almost impossible to accurately predict in the neonatal period with conventional brain imaging technology. But physicians may now be able to identify the premature infants most at risk for deficits as well as the type of deficit, enabling them to quickly initiate early neuroprotective therapies, by using highly reliable 3-D MRI imaging techniques developed by clinician scientists at The Research Institute at Nationwide Children's Hospital. The imaging technique also facilitates early and repeatable assessments of these therapies to help clinicians and researchers determine whether neuroprotective treatments are effective in a matter of weeks, instead of the two to five years previously required.

Related Articles


The researchers -- experts in brain imaging and anatomy -- developed a protocol for using the special imaging technique to study the development of 10 brain tracts in these tiny patients, work published online January 24 in PLOS ONE. Colorful 3-D images of each tract revealed the connections of the segments to different parts of the brain or the spinal cord. Each of the 10 tracts is important for certain functions and abilities, such as language, movement or vision.

"Developing a reliable and reproducible methodology for studying the premature brain was crucial in order for us to get to the next step: assessing neuroprotective therapies," said Nehal A. Parikh, DO, principal investigator in the Center for Perinatal Research at Nationwide Children's and senior author on the paper. "Now that we have this protocol, we can improve the standard of care and evaluate efforts to promote brain health within 8 to 12 weeks of beginning the interventions. That way, we can quickly see what really works."

The study tested a detailed approach to measuring brain structure in extremely low birth weight infants at term-equivalent age by comparing their diffusion tensor tractography (DTT) scans to those of healthy, full-term newborns. DTT is a special MRI technique that produces 3-D images and is able to detect the brain's structure and more subtle injuries than earlier forms of the technology.

The research team is the first to confirm differences in the fibrous structure of the 10 tracts between healthy, full-term infant brains and those of premature babies. Although the imaging technology is regularly used in adults, the tiny head size and lack of benchmark measurements in healthy infants meant that the use of DTT in premature infants was previously uncharted territory. With the detailed technique developed by Dr. Parikh's team, the images can now be reproducibly processed and reliably interpreted.

"This protocol opens the field to far greater use of the methodology for targeting and assessing therapies in these infants," said Dr. Parikh, who also is an associate professor of pediatrics at The Ohio State University College of Medicine. "We already have studies underway using our DTT segmentation methodology to measure the effectiveness of early neuroprotective interventions, such as the use of breast milk or skin-to-skin contact while premature babies are in intensive care."

As imaging technology continues to be refined, the goal of targeted therapies based on the specific region of the brain with a delay or injury will become reality, Dr. Parikh predicted. For example, if an infant's DTT scan indicates an under-developed corticospinal tract -- the region of the brain controlling motor ability -- physicians could immediately begin proactive physical therapies with the baby instead of waiting until the delay manifests itself. A repeat DTT scan a few months after beginning the therapy could then detect whether the therapy is effectively improving the structure of that brain tract.

"Because cognitive and behavioral deficits cannot be diagnosed until school age, there is an urgent need for robust early prognostic biomarkers," said Dr. Parikh. "Our work is an important step in this direction and will facilitate early testing of neuroprotective interventions."


Story Source:

The above story is based on materials provided by Nationwide Children's Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. Supreet Kaur, Samuel Powell, Lili He, Christopher R. Pierson, Nehal A. Parikh. Reliability and Repeatability of Quantitative Tractography Methods for Mapping Structural White Matter Connectivity in Preterm and Term Infants at Term-Equivalent Age. PLoS ONE, 2014; 9 (1): e85807 DOI: 10.1371/journal.pone.0085807

Cite This Page:

Nationwide Children's Hospital. "Highly reliable brain-imaging protocol identifies delays in premature infants." ScienceDaily. ScienceDaily, 25 January 2014. <www.sciencedaily.com/releases/2014/01/140125172408.htm>.
Nationwide Children's Hospital. (2014, January 25). Highly reliable brain-imaging protocol identifies delays in premature infants. ScienceDaily. Retrieved April 24, 2015 from www.sciencedaily.com/releases/2014/01/140125172408.htm
Nationwide Children's Hospital. "Highly reliable brain-imaging protocol identifies delays in premature infants." ScienceDaily. www.sciencedaily.com/releases/2014/01/140125172408.htm (accessed April 24, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, April 24, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

85 Killed in Niger by Meningitis Since Start of Year

85 Killed in Niger by Meningitis Since Start of Year

AFP (Apr. 24, 2015) A meningitis outbreak in Niger has killed 85 people since the start of the year prompting authorities to close schools in the capital Niamey until Monday. Video provided by AFP
Powered by NewsLook.com
C-Section Births a Trend in Brazil

C-Section Births a Trend in Brazil

AFP (Apr. 24, 2015) More than half of Brazil&apos;s babies are born via cesarean section, as mothers and doctors opt for a faster and less painful experience despite the health risks. Duration: 02:02 Video provided by AFP
Powered by NewsLook.com
Anti-Malaria Jab Hope

Anti-Malaria Jab Hope

Reuters - News Video Online (Apr. 24, 2015) The world&apos;s first anti-malaria vaccine could get the go-ahead for use in Africa from October if approved by international regulators. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com
3D Food Printing: The Meal of the Future?

3D Food Printing: The Meal of the Future?

AP (Apr. 23, 2015) Developers of 3D food printing hope the culinary technology will revolutionize the way we cook and eat. (April 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins