Featured Research

from universities, journals, and other organizations

New clues on thermodynamic behavior in small systems

Date:
February 4, 2014
Source:
Universidad de Barcelona
Summary:
The energy lost in small systems, like nanodevices, can be decisive in order to obtain an optimal functioning of this kind of systems. Under a thermodynamic point of view, the application of the stability theory and classical statistical mechanics to the description of small systems under destabilizing external conditions reveals a constant generation of heat while the system oscillates between two structural configurations or thermodynamic phases. 

The energy lost in small systems, like nanodevices, can be decisive in order to obtain an optimal functioning of this kind of systems. Under a thermodynamic point of view, the application of the stability theory and classical statistical mechanics to the description of small systems under destabilizing external conditions reveals a constant generation of heat while the system oscillates between two structural configurations or thermodynamic phases.

Related Articles


A research published on the journal Physical Review E, and signed by Agustín Pérez, from the Department of Fundamental Physics of the University of Barcelona, and Iván Santamaría, from the National Autonomous University of Mexico, analyses the implications of the finite size of the system on its thermodynamic behavior.

"The results obtained in this research are of great interest since they underlie the physics of the energy generation and conversion nanodevices. Potential applications have been recently reported for energy nano-generators, systems based on the pyroelectric effect, and electric energy storage systems like batteries," explains Agustín Pérez.

When a macroscopic system is subjected to destabilizing conditions, it separates into two or more phases that may coexist in equilibrium. This involves the formation of interfaces and, finally, new thermodynamic systems emerge.

However, when the system is finite and small enough, like nanodevices, the formation of an interface could imply an excessively high energetic cost and, therefore, becomes energetically unfavorable. Thus, this system will remain in a stationary state strongly sensitive to fluctuations. Nevertheless, since the thermodynamic parameters of both states differ from those of the external bath, a thermodynamic force known as critical oscillation appears driving the state of the system towards the unstable state externally imposed were again it cannot remain. "As a result of this description, it can be predicted that this peculiar behavior of small systems underlie the dynamic of energy generating, storage or conversion nanodevices," Pérez concludes.


Story Source:

The above story is based on materials provided by Universidad de Barcelona. Note: Materials may be edited for content and length.


Journal Reference:

  1. I. Santamaría-Holek, A. Pérez-Madrid. Thermostatistical description of small systems in nonequilibrium conditions: Energy conversion and harvesting. Physical Review E, 2014; 89 (1) DOI: 10.1103/PhysRevE.89.012144

Cite This Page:

Universidad de Barcelona. "New clues on thermodynamic behavior in small systems." ScienceDaily. ScienceDaily, 4 February 2014. <www.sciencedaily.com/releases/2014/02/140204073934.htm>.
Universidad de Barcelona. (2014, February 4). New clues on thermodynamic behavior in small systems. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2014/02/140204073934.htm
Universidad de Barcelona. "New clues on thermodynamic behavior in small systems." ScienceDaily. www.sciencedaily.com/releases/2014/02/140204073934.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) — In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) — Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) — The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com
Analysis: NTSB Wants Better Black Boxes

Analysis: NTSB Wants Better Black Boxes

AP (Jan. 22, 2015) — NTSB investigators recommended Thursday that long-distance passenger planes carry improved technology to allow them to be found more easily in a crash, as well as include enhanced cockpit recording technology. (Jan. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins