Featured Research

from universities, journals, and other organizations

Metal in heart non-hazardous to health, study shows

Date:
February 18, 2014
Source:
Friedrich Schiller University Jena
Summary:
Implants made of nickel-titanium alloy were evaluated in a long-term study. Results indicate that the release of nickel from wires made of nickel-titanium alloys is very low, even over long periods of time. Most of the metal released from implants in the heart are leaked in the first days and weeks, depending on the pre-treatment of the material. This is due, the researchers say, to the mechanical strain of the implant during the surgery. In the long run, however, the nickel release decreases to amounts of a few nanograms per day and is hence far below the amount of nickel that we absorb anyway through our food on a daily basis.

An occluder made of a nickel-titanium alloy. These medical implants are used for the correction of a defective cardiac septum.
Credit: Jan-Peter Kasper/FSU)

Materials Scientists at the University of Jena examine implants made of nickel-titanium alloy in a long-term study: The team led by Professor Rettenmayr and his colleague Dr. Andreas Undisz report in the current issue of the scientific journal 'Acta Biomaterialia' that the release of nickel from wires made of nickel-titanium alloys is very low, also over longer periods of time.

A trousers button, a coin or a watch can be dangerous for people with a nickel allergy. Approximately 1 in 10 Germans is allergic to the metal. "This raises the question of the safety of medical implants containing nickel," explains Professor Dr. Markus Rettenmayr of the Friedrich-Schiller-Universitδt Jena. Nickel-titanium alloys are increasingly used as material for cardiovascular implants in minimal invasive surgery. Once implanted, nickel-titanium alloys can release small amounts of nickel due to corrosion phenomena, the holder of the Chair of Metallic Materials explains. Our concern was that this could -- in particular over a long period of time -- lead to a nickel contamination in the patient's body that possibly results in health problems.

But these concerns are essentially unfounded: The team of Jena scientists led by Professor Rettenmayr and his colleague Dr. Andreas Undisz report in the current issue of the scientific journal 'Acta Biomaterialia' that the release of nickel from wires made of nickel-titanium alloys is very low, also over longer periods of time. The scientists could back up their statement in the first long-term study ever, which examined such nickel release in detail: The testing period for metal release, as requested for governmental approval of a medical implant, is only a few days. In contrast the Jena research team monitored the release of nickel over a time period of eight months.

Examination objects were fine wires from a superelastic nickel-titanium alloy that are, for example, applied in the form of occluders (these are medical implants used for the correction of a defective cardiac septum). Such occluders often consist of two tiny wire-mesh "umbrellas," approximately the size of a 1 Euro coin. The superelastic implant can be mechanically drawn into the shape of a thin thread, which then can be placed in a cardiac catheter. "By that means the occluders can be put into place via minimal invasive surgery," Dr. Undisz says. Ideally the implant will stay in the patient's body for years or decades.

Dr. Undisz and the doctoral candidate Katharina Freiberg wanted to find out what happens during this period of time with the nickel-titanium wire. They exposed samples of the wires, which underwent different mechanical and thermal pre-treatment, to highly purified water. They then examined the release of nickel according to pre-defined time intervals. "This wasn't trivial at all," Undisz says, "because the concentration of the released metal is often at the limit of detection." However, in co-operation with scientists from the Institute for Clinical Chemistry and Laboratory Medicine of the Jena University Hospital the materials scientists successfully developed a reliable test routine to measure the process of the nickel release.

"Mostly in the first days and weeks, depending on the pre-treatment of the material, considerable amounts of nickel may get released," Undisz summarizes the results. According to the materials scientist this is due to the mechanical strain of the implant during the surgery. "The deformation damages the thin layer of oxide covering the material. As a consequence the initial nickel release increases." In the long run, however, the nickel release decreases to amounts of a few nanograms per day and is hence far below the amount of nickel that we absorb anyway through our food on a daily basis.


Story Source:

The above story is based on materials provided by Friedrich Schiller University Jena. Note: Materials may be edited for content and length.


Journal Reference:

  1. Katharina E. Freiberg, Sibylle Bremer-Streck, Michael Kiehntopf, Markus Rettenmayr, Andreas Undisz. Effect of thermomechanical pre-treatment on short- and long-term Ni release from biomedical NiTi. Acta Biomaterialia, 2014; DOI: 10.1016/j.actbio.2014.01.003

Cite This Page:

Friedrich Schiller University Jena. "Metal in heart non-hazardous to health, study shows." ScienceDaily. ScienceDaily, 18 February 2014. <www.sciencedaily.com/releases/2014/02/140218100622.htm>.
Friedrich Schiller University Jena. (2014, February 18). Metal in heart non-hazardous to health, study shows. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2014/02/140218100622.htm
Friedrich Schiller University Jena. "Metal in heart non-hazardous to health, study shows." ScienceDaily. www.sciencedaily.com/releases/2014/02/140218100622.htm (accessed September 16, 2014).

Share This



More Health & Medicine News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) — President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) — A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
EU Ministers and Experts Meet to Discuss Ebola Reponse

EU Ministers and Experts Meet to Discuss Ebola Reponse

AFP (Sep. 15, 2014) — The European Commission met on Monday to coordinate aid that the EU can offer to African countries affected by the Ebola outbreak. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com
Despite The Risks, Antibiotics Still Overprescribed For Kids

Despite The Risks, Antibiotics Still Overprescribed For Kids

Newsy (Sep. 15, 2014) — A new study finds children are prescribed antibiotics twice as often as is necessary. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins