Featured Research

from universities, journals, and other organizations

Controlling magnetism with an electric field

Date:
February 18, 2014
Source:
University of Miami
Summary:
Scientists are now proposing a novel approach to achieve greater memory density while producing less heat: by using an electric field instead of a current to turn magnetism on and off, thereby encoding the electrical devices.

There is a big effort in industry to produce electrical devices with more and faster memory and logic. Magnetic memory elements, such as in a hard drive, and in the future in what is called MRAM (magnetic random access memory), use electrical currents to encode information. However, the heat which is generated is a significant problem, since it limits the density of devices and hence the performance of computer chips.

Scientists are now proposing a novel approach to achieve greater memory density while producing less heat: by using an electric field instead of a current to turn magnetism on and off, thereby encoding the electrical devices.

The University of Miami researcher and collaborators did not discover electrical control of magnetism, but a new understanding of the phenomenon. The study shows how the electric field, and not the change in the electron density in the film (called doping), leads to control of magnetism in current experiments. The findings are published in the journal Scientific Reports.

"Our work shows a new path to using a magnetic capacitor which uses electric field to control magnetism," says Stewart Barnes, physicist at the UM College of Arts and Sciences, and corresponding author of the study. "The energy dissipation involved is much lower than produced with an electric current, drastically reducing the heat."

Electricity and magnetism are two aspects of the electromagnetic force. Ampθre's law says that when charged particles flow in a conductor, they produce a magnetic field. The intensity of an electric current flowing in a wire determines the intensity of this field near the wire. On the other hand, an electric field in the space around a given charge is given by Coulomb's law. It determines the force on a second nearby charged particle. There is no charge flow.

Traditionally, magnetism is activated in an electromagnet by passing a current through a coil around a magnetic material. This coil generates a magnetic field. The new method uses a capacitor, a device used to generate an electric field, to control the magnetism of a magnetic material.

"With the electrical control of magnetism, you use a capacitor in which one element is magnetic and, simply by charging the capacitor, you change the direction of the magnetism, say from being in the plane of the film to being perpendicular," says Barnes.

This property of magnetic materials, where the magnetization is oriented in a preferred direction, is called anisotropy. The new approach developed by the researchers is founded on a relativistic effect called Rashba spin-orbit coupling. The effect arises from the interaction between the spin of an electron and an electric field.

"We use this Rashba effect to produce a magnetic anisotropy, which leads to our control of magnetism," says Barnes. "We produce the electric field, in part, by a proper choice of the magnetic and non-magnetic elements in our bi-layer and by generating an electric field with a capacitor."

The new mechanism has been studied, theoretically, in sandwiches of magnetic materials and non-magnetic metals or semi-conductors. The analysis of a number of such sandwiches helps answer technical questions associated with the control of magnetism of thin ferromagnetic films, as might be used in memory and logic devices.

Thin magnetic films with a controllable perpendicular magnetic anisotropy (PMA) have important applications, not only for MRAM and logic, but also for electromechanical devices, such as actuators, which are devices that transform an electrical signal into motion. For that reason, an internal electric field that can be used to engineer such a PMA is of great interests.

The researchers are planning experiments which verify the basic principles of the current study and to simulate the materials involved using a computer.


Story Source:

The above story is based on materials provided by University of Miami. The original article was written by Marie Guma-Diaz and Annette Gallagher. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stewart E. Barnes, Jun'ichi Ieda, Sadamichi Maekawa. Rashba Spin-Orbit Anisotropy and the Electric Field Control of Magnetism. Scientific Reports, 2014 [link]

Cite This Page:

University of Miami. "Controlling magnetism with an electric field." ScienceDaily. ScienceDaily, 18 February 2014. <www.sciencedaily.com/releases/2014/02/140218143332.htm>.
University of Miami. (2014, February 18). Controlling magnetism with an electric field. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2014/02/140218143332.htm
University of Miami. "Controlling magnetism with an electric field." ScienceDaily. www.sciencedaily.com/releases/2014/02/140218143332.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) — Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins