Featured Research

from universities, journals, and other organizations

Controlling magnetism with an electric field

Date:
February 18, 2014
Source:
University of Miami
Summary:
Scientists are now proposing a novel approach to achieve greater memory density while producing less heat: by using an electric field instead of a current to turn magnetism on and off, thereby encoding the electrical devices.

There is a big effort in industry to produce electrical devices with more and faster memory and logic. Magnetic memory elements, such as in a hard drive, and in the future in what is called MRAM (magnetic random access memory), use electrical currents to encode information. However, the heat which is generated is a significant problem, since it limits the density of devices and hence the performance of computer chips.

Scientists are now proposing a novel approach to achieve greater memory density while producing less heat: by using an electric field instead of a current to turn magnetism on and off, thereby encoding the electrical devices.

The University of Miami researcher and collaborators did not discover electrical control of magnetism, but a new understanding of the phenomenon. The study shows how the electric field, and not the change in the electron density in the film (called doping), leads to control of magnetism in current experiments. The findings are published in the journal Scientific Reports.

"Our work shows a new path to using a magnetic capacitor which uses electric field to control magnetism," says Stewart Barnes, physicist at the UM College of Arts and Sciences, and corresponding author of the study. "The energy dissipation involved is much lower than produced with an electric current, drastically reducing the heat."

Electricity and magnetism are two aspects of the electromagnetic force. Ampθre's law says that when charged particles flow in a conductor, they produce a magnetic field. The intensity of an electric current flowing in a wire determines the intensity of this field near the wire. On the other hand, an electric field in the space around a given charge is given by Coulomb's law. It determines the force on a second nearby charged particle. There is no charge flow.

Traditionally, magnetism is activated in an electromagnet by passing a current through a coil around a magnetic material. This coil generates a magnetic field. The new method uses a capacitor, a device used to generate an electric field, to control the magnetism of a magnetic material.

"With the electrical control of magnetism, you use a capacitor in which one element is magnetic and, simply by charging the capacitor, you change the direction of the magnetism, say from being in the plane of the film to being perpendicular," says Barnes.

This property of magnetic materials, where the magnetization is oriented in a preferred direction, is called anisotropy. The new approach developed by the researchers is founded on a relativistic effect called Rashba spin-orbit coupling. The effect arises from the interaction between the spin of an electron and an electric field.

"We use this Rashba effect to produce a magnetic anisotropy, which leads to our control of magnetism," says Barnes. "We produce the electric field, in part, by a proper choice of the magnetic and non-magnetic elements in our bi-layer and by generating an electric field with a capacitor."

The new mechanism has been studied, theoretically, in sandwiches of magnetic materials and non-magnetic metals or semi-conductors. The analysis of a number of such sandwiches helps answer technical questions associated with the control of magnetism of thin ferromagnetic films, as might be used in memory and logic devices.

Thin magnetic films with a controllable perpendicular magnetic anisotropy (PMA) have important applications, not only for MRAM and logic, but also for electromechanical devices, such as actuators, which are devices that transform an electrical signal into motion. For that reason, an internal electric field that can be used to engineer such a PMA is of great interests.

The researchers are planning experiments which verify the basic principles of the current study and to simulate the materials involved using a computer.


Story Source:

The above story is based on materials provided by University of Miami. The original article was written by Marie Guma-Diaz and Annette Gallagher. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stewart E. Barnes, Jun'ichi Ieda, Sadamichi Maekawa. Rashba Spin-Orbit Anisotropy and the Electric Field Control of Magnetism. Scientific Reports, 2014 [link]

Cite This Page:

University of Miami. "Controlling magnetism with an electric field." ScienceDaily. ScienceDaily, 18 February 2014. <www.sciencedaily.com/releases/2014/02/140218143332.htm>.
University of Miami. (2014, February 18). Controlling magnetism with an electric field. ScienceDaily. Retrieved August 2, 2014 from www.sciencedaily.com/releases/2014/02/140218143332.htm
University of Miami. "Controlling magnetism with an electric field." ScienceDaily. www.sciencedaily.com/releases/2014/02/140218143332.htm (accessed August 2, 2014).

Share This




More Matter & Energy News

Saturday, August 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Newsy (July 31, 2014) — The deal will help build a massive battery factory that Tesla says will produce 500,000 lithium batteries by 2020. Video provided by Newsy
Powered by NewsLook.com
Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) — Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Cycle World (July 30, 2014) — The Bonnier Motorcycle Group presents Smoked; a three part video series. In this episode the 2015 Ducati Diavel takes on the 2014 Chevy Corvette Stingray Video provided by Cycle World
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins