Featured Research

from universities, journals, and other organizations

Protein's role in human memory and learning: Deficiency in SNX27 could explain the learning difficulties in Down's syndrome

Date:
February 19, 2014
Source:
A*STAR
Summary:
Scientists have identified the precise role of the protein, SNX27, in the pathway leading to memory and learning impairment. The study broadens the understanding of the brain's memory function and could be used to explain defects in the cognitive development of those with Down's syndrome. The newly established knowledge could potentially facilitate exploration of strategies to improve memory and learning abilities in Down's syndrome.

Scientists at A*STAR's Institute of Molecular and Cell Biology (IMCB) have identified the precise role of the protein, SNX27, in the pathway leading to memory and learning impairment. The study broadens the understanding of the brain's memory function and could be used to explain defects in the cognitive development of those with Down's syndrome. The newly established knowledge could potentially facilitate exploration of strategies to improve memory and learning abilities in Down's syndrome.

Down's syndrome is a genetic condition characterized by the presence of an additional copy of chromosome 21. About one in eight hundred new-borns is diagnosed with Down's syndrome. It is a condition that leads to impairments in both cognitive ability and physical growth that range from mild to moderate developmental disabilities. Yet, there is still no treatment for it.

In an earlier study published in Nature Medicine, an international team of scientists discovered that the additional copy of chromosome 21 in Down's syndrome reduces the production of SNX27 in the brain and results in synaptic dysfunction. Synapse, a structure that permits nerve cells to pass chemical signals to each other, is known to have an important role in memory formation and its dysfunction could result in impairment. By re-introducing SNX27 into the brain, memory could be restored hence suggesting that SNX27 is an essential protein for memory and learning.

The protein's role in the pathway leading to memory impairment, however, remained unclear until scientists from IMCB utilised live-cell imaging techniques to elucidate the mechanism of memory impairment and illustrated how SNX27 attributes to synaptic dysfunction. The scientists observed that transmission of chemical signals between the nerve cells are facilitated by AMPA-receptors and the activity occurs on the brain cell surface. As SNX27 plays an important role in shuttling the AMPA-receptor to the brain cell surface, lower levels of SNX27 means fewer receptors are carried to the surface, which consequently interrupts the signal transmission and impairs memory. This discovery was reported in the 24 January, 2014 issue of the scientific journal, Nature Communications.

The correlation established between SNX27 levels and memory could explain why individuals with Down's syndrome encounter memory and learning difficulties. Identifying the target and its role is a crucial first step to therapy -- having known the role of SNX27 in memory impairment, future research on Down's syndrome could focus on developing strategies which can effectively re-introduce the protein into the brain to restore memory and learning abilities.

Dr Loo Li Shen was an A*STAR scholar who is now working with Executive Director of IMCB, Prof Wanjin Hong, and is also an adjunct Assistant Professor at LKC medical school of NTU. The lead author of the Nature Communications paper and co-author of the Nature Medicine paper said, "Memory and the ability to learn capture the essence of life. Our research goes beyond the lab to make a difference by finding ways to grant these fundamental capabilities to those diagnosed with Down's syndrome. Our ultimate goal is to create a positive impact on the lives of these valuable children."

Prof Hong added, "In IMCB, we conduct research that would contribute to our understanding of humankind. This is a good example where the study is directed at a human condition -- the Down's syndrome. The knowledge established from the findings could potentially translate into treatments for Down's syndrome or even become applicable to other similar human conditions."


Story Source:

The above story is based on materials provided by A*STAR. Note: Materials may be edited for content and length.


Journal References:

  1. Li Shen Loo, Ning Tang, Muthafar Al-Haddawi, Gavin Stewart Dawe, Wanjin Hong. A role for sorting nexin 27 in AMPA receptor trafficking. Nature Communications, 2014; 5 DOI: 10.1038/ncomms4176
  2. Xin Wang, Yingjun Zhao, Xiaofei Zhang, Hedieh Badie, Ying Zhou, Yangling Mu, Li Shen Loo, Lei Cai, Robert C Thompson, Bo Yang, Yaomin Chen, Peter F Johnson, Chengbiao Wu, Guojun Bu, William C Mobley, Dongxian Zhang, Fred H Gage, Barbara Ranscht, Yun-wu Zhang, Stuart A Lipton, Wanjin Hong, Huaxi Xu. Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction by modulating glutamate receptor recycling in Down's syndrome. Nature Medicine, 2013; 19 (4): 473 DOI: 10.1038/nm.3117

Cite This Page:

A*STAR. "Protein's role in human memory and learning: Deficiency in SNX27 could explain the learning difficulties in Down's syndrome." ScienceDaily. ScienceDaily, 19 February 2014. <www.sciencedaily.com/releases/2014/02/140219095524.htm>.
A*STAR. (2014, February 19). Protein's role in human memory and learning: Deficiency in SNX27 could explain the learning difficulties in Down's syndrome. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2014/02/140219095524.htm
A*STAR. "Protein's role in human memory and learning: Deficiency in SNX27 could explain the learning difficulties in Down's syndrome." ScienceDaily. www.sciencedaily.com/releases/2014/02/140219095524.htm (accessed April 21, 2014).

Share This



More Mind & Brain News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Study On Artists' Brain Shows They're 'Structurally Unique'

Study On Artists' Brain Shows They're 'Structurally Unique'

Newsy (Apr. 17, 2014) The brains of artists aren't really left-brain or right-brain, but rather have extra neural matter in visual and motor control areas. Video provided by Newsy
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins