Featured Research

from universities, journals, and other organizations

Astronomers get first peek into core of supernova, using NuSTAR telescope

Date:
February 19, 2014
Source:
University of California - Berkeley
Summary:
Astronomers have peered for the first time into the heart of an exploding star in the final minutes of its existence. The feat by the high-energy X-ray satellite NuSTAR provides details of the physics of the core explosion inaccessible until now, says team member Steven Boggs of UC Berkeley. NuSTAR mapped radioactive titanium in the Cassiopeia A supernova remnant, which has expanded outward and become visible from Earth since the central star exploded in 1671.

Astronomers for the first time have peered into the heart of an exploding star in the final minutes of its existence. Superimposed images of the Cas A supernova remnant taken by NASA’s Chandra and NuSTAR orbiting telescopes. Red and green are X-ray emissions detected by Chandra of heated iron and silicon/magnesium, respectively, while blue shows NuSTAR’s map of the distribution of titanium produced in the core of the explosion 340 years ago.
Credit: NASA/NuSTAR image

Astronomers for the first time have peered into the heart of an exploding star in the final minutes of its existence.

The feat is one of the primary goals of NASA's NuSTAR mission, launched in June 2012 to measure high-energy X-ray emissions from exploding stars, or supernovae, and black holes, including the massive black hole at the center of our Milky Way Galaxy.

The NuSTAR team reported in this week's issue of the journal Nature the first map of titanium thrown out from the core of a star that exploded in 1671. That explosion produced the beautiful supernova remnant known as Cassiopeia A (Cas A).

The well-known supernova remnant has been photographed by many optical, infrared and X-ray telescopes in the past, but these revealed only how the star's debris collided in a shock wave with the surrounding gas and dust and heated it up. NuSTAR has produced the first map of high-energy X-ray emissions from material created in the actual core of the exploding star: the radioactive isotope titanium-44, which was produced in the star's core as it collapsed to a neutron star or black hole. The energy released in the core collapse supernova blew off the star's outer layers, and the debris from this explosion has been expanding outward ever since at 5,000 kilometers per second.

"This has been a holy grail observation for high energy astrophysics for decades," said coauthor and NuSTAR investigator Steven Boggs, UC Berkeley professor and chair of physics. "For the first time we are able to image the radioactive emission in a supernova remnant, which lets us probe the fundamental physics of the nuclear explosion at the heart of the supernova like we have never been able to do before."

"Supernovae produce and eject into the cosmos most of the elements are important to life as we know it," said UC Berkeley professor of astronomy Alex Filippenko, who was not part of the NuSTAR team. "These results are exciting because for the first time we are getting information about the innards of these explosions, where the elements are actually produced."

Boggs says that the information will help astronomers build three-dimensional computer models of exploding stars, and eventually understand some of the mysterious characteristics of supernovae, such as jets of material ejected by some. Previous observations of Cas A by the Chandra X-ray telescope, for example, showed jets of silicon emerging from the star.

"Stars are spherical balls of gas, and so you might think that when they end their lives and explode, that explosion would look like a uniform ball expanding out with great power," said Fiona Harrison, the principal investigator of NuSTAR at the California Institute of Technology. "Our new results show how the explosion's heart, or engine, is distorted, possibly because the inner regions literally slosh around before detonating."

Expanding supernova remnant

Cas A is about 11,000 light years from Earth and the most studied nearby supernova remnant. In the 343 years since the star exploded, the debris from the explosion has expanded to about 10 light years across, essentially magnifying the pattern of the explosion so that it can be seen from Earth.

Earlier observations of the shock-heated iron in the debris cloud led some astronomers to think that the explosion was symmetric, that is, equally powerful in all directions. Boggs noted, however, that the origins of the iron are so unclear that its distribution may not reflect the explosion pattern from the core.

"We don't know whether the iron was produced in the supernova explosion, whether it was part of the star when it originally formed, if it is just in the surrounding material, or even if the iron we see represents the actual distribution of iron itself, because we wouldn't see it if it were not heated in the shock," he said.

The new map of titanium-44, which does not match the distribution of iron in the remnant, strongly suggests that there is cold iron in the interior that Chandra does not see. Iron and titanium are produced in the same place in the star, said UC Berkeley research physicist Andreas Zoglauer, so they should be similarly distributed in the explosive debris.

"The surprising thing, which we suspected all along, is that the iron does not match titanium at all, so the iron we see is not mapping the distribution of elements produced in the core of the explosion," Boggs said.

He and his UC Berkeley colleagues also launch balloon-borne high-energy X-ray and gamma-ray detectors to record the radioactive decay of other elements, including iron, in supernovae to learn more about the nuclear reactions that take place during these brief, catastrophic explosions.

"The radioactive nuclei act as a probe of supernova explosions and allow us to see directly into densities and temperatures where nuclear processes are going that we don't have access to in terrestrial laboratories," Boggs said.

NuSTAR continues to observe radioactive titanium-44 emissions from a handful of other supernova remnants to determine if the pattern holds for other supernovae as well. These supernova remnants must be close enough to Earth for the debris structure to be seen, yet young enough for radioactive elements like titanium -- which has a 60-day half-life -- to still be emitting high-energy X-rays.

This work was supported under NASA No. NNG08FD60C, and made use of data from the Nuclear Spectroscopic Telescope Array (NuSTAR) mission, a project led by Caltech, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration.

NuSTAR mission instrument manager William Craig of UC Berkeley's Space Sciences Laboratory is also a coauthor of the Nature paper. Zoglauer conducted computer simulations of NuSTAR's detectors before launch, and continues to monitor the radioactive background in the detectors to correct observations.


Story Source:

The above story is based on materials provided by University of California - Berkeley. The original article was written by Robert Sanders. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. W. Grefenstette, F. A. Harrison, S. E. Boggs, S. P. Reynolds, C. L. Fryer, K. K. Madsen, D. R. Wik, A. Zoglauer, C. I. Ellinger, D. M. Alexander, H. An, D. Barret, F. E. Christensen, W. W. Craig, K. Forster, P. Giommi, C. J. Hailey, A. Hornstrup, V. M. Kaspi, T. Kitaguchi, J. E. Koglin, P. H. Mao, H. Miyasaka, K. Mori, M. Perri, M. J. Pivovaroff, S. Puccetti, V. Rana, D. Stern, N. J. Westergaard, W. W. Zhang. Asymmetries in core-collapse supernovae from maps of radioactive 44Ti in Cassiopeia A. Nature, 2014; 506 (7488): 339 DOI: 10.1038/nature12997

Cite This Page:

University of California - Berkeley. "Astronomers get first peek into core of supernova, using NuSTAR telescope." ScienceDaily. ScienceDaily, 19 February 2014. <www.sciencedaily.com/releases/2014/02/140219133333.htm>.
University of California - Berkeley. (2014, February 19). Astronomers get first peek into core of supernova, using NuSTAR telescope. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2014/02/140219133333.htm
University of California - Berkeley. "Astronomers get first peek into core of supernova, using NuSTAR telescope." ScienceDaily. www.sciencedaily.com/releases/2014/02/140219133333.htm (accessed July 25, 2014).

Share This




More Space & Time News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: ISS Cargo Ship Launches in Kazakhstan

Raw: ISS Cargo Ship Launches in Kazakhstan

AP (July 23, 2014) The Progress 56 cargo ship launched from the Baikonur Cosmodrome in Kazakhstan Wednesday. NASA says it will deliver cargo and crew supplies to the International Space Station. (July 23) Video provided by AP
Powered by NewsLook.com
Raw: Cargo Craft Undocks from Space Station

Raw: Cargo Craft Undocks from Space Station

AP (July 22, 2014) A Russian Soyuz cargo-carrying spacecraft undocked from the International Space Station on Monday. The craft is due to undergo about ten days of engineering tests before it burns up in the Earth's atmosphere. (July 22) Video provided by AP
Powered by NewsLook.com
NASA Ceremony Honors Moon Walker Neil Armstrong

NASA Ceremony Honors Moon Walker Neil Armstrong

AP (July 21, 2014) NASA honored one of its most famous astronauts Monday by renaming a historic building at the Kennedy Space Center in Florida. It now bears the name of Neil Armstrong, the first man to walk on the moon. (July 21) Video provided by AP
Powered by NewsLook.com
Neil Armstrong's Post-Apollo 11 Life

Neil Armstrong's Post-Apollo 11 Life

Newsy (July 19, 2014) Neil Armstrong gained international fame after becoming the first man to walk on the moon in 1969. But what was his life like after the historic trip? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins