Featured Research

from universities, journals, and other organizations

Clutter cutter: Computer modeling used to understand how messy cells contribute to cancer

Date:
February 19, 2014
Source:
Biophysical Society
Summary:
In a messy house, people use computers to manage paper and photo clutter; companies use computer systems to track their inventory. Researchers are taking a similar approach to cell-molecular inventory control for cancer. They have created computer models, using their programming framework (PySB), which enable them to explore the complex biochemical processes that drive cancer growth.

Python code that represents a signaling cartoon about how cells commit to death.
Credit: C.Lopez/Vanderbilt

Life can be messy at all scales, requiring different organizational strategies -- from cleaning the house, to removing damaged or expired cells from the body to avoid cancer progression.

In a messy house, people use computers to manage paper and photo clutter; companies use computer systems to track their inventory. Now a team of researchers at Vanderbilt University in Nashville, Tenn., is taking a similar approach to cell-molecular inventory control for cancer. They have created computer models, using their programming framework (PySB), which enable them to explore the complex biochemical processes that drive cancer growth.

"Our hypothesis is that understanding how the cell uses their protein inventory will lead to understanding why cells dysregulate and become carcinogenic. We expect model outputs will lead to novel, targeted cancer therapies -- possibly by 2019," explained researcher Carlos F. Lopez, who will present the work at the 58th annual Biophysical Society Meeting in San Francisco, Feb.15-19.

Lopez is interested in understanding how cells in multicellular organisms engage programmed cell death -- so-called "cell suicide" -- for cellular removal. It is a natural part of many cells' life cycle.

When cancer cells avoid programmed cell death, uncontrolled growth fuels tumor progression. The Vanderbilt team expects their computer models to identify what goes wrong in these cases, at a speed and scale never before possible. Lopez noted: "We are bridging the nanoscale molecular-level biochemical interactions with the macroscale cancer tumor outcomes, which is a huge range in scales. Most people don't realize this, but molecular chemical reactions at the nanometer and nanosecond level affect things that happen at the timescale level of years -- nine orders of magnitude in space and time! For comparison, a nanosecond is to a second like a second is to one century."

Rather than listing the cellular biochemical reactions by hand, PySB enables the researchers to "write" the biochemical cellular processes as computer programs. "With this approach we can create, simulate, and explore multiple complex mathematical systems that represent biology with ease," Dr. Lopez said.

The models aim to understand how healthy cells normally self-destruct when removal is needed, and why cancer cells avoid the removal signals. If the approach is validated over the next few years, it could lead to the use of predictive mathematical models, representing biochemical signaling processes, to forecast how a cell, group of cells, or a tumor, would respond to single or multiple drug combinations. Targeted, individualized and optimized cancer treatments could then be tailored to each patient.


Story Source:

The above story is based on materials provided by Biophysical Society. Note: Materials may be edited for content and length.


Cite This Page:

Biophysical Society. "Clutter cutter: Computer modeling used to understand how messy cells contribute to cancer." ScienceDaily. ScienceDaily, 19 February 2014. <www.sciencedaily.com/releases/2014/02/140219173144.htm>.
Biophysical Society. (2014, February 19). Clutter cutter: Computer modeling used to understand how messy cells contribute to cancer. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2014/02/140219173144.htm
Biophysical Society. "Clutter cutter: Computer modeling used to understand how messy cells contribute to cancer." ScienceDaily. www.sciencedaily.com/releases/2014/02/140219173144.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Generics Eat Into Pfizer's Sales

Generics Eat Into Pfizer's Sales

Reuters - Business Video Online (July 29, 2014) Pfizer, the world's largest drug maker, cut full-year revenue forecasts because generics could cut into sales of its anti-arthritis drug, Celebrex. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Nigeria Ups Ebola Stakes on 1st Death

Nigeria Ups Ebola Stakes on 1st Death

Reuters - Business Video Online (July 29, 2014) Nigerian authorities have shut and quarantined a Lagos hospital where a Liberian man died of the Ebola virus, the first recorded case of the highly-infectious disease in Africa's most populous economy. David Pollard reports Video provided by Reuters
Powered by NewsLook.com
Running 5 Minutes A Day Might Add Years To Your Life

Running 5 Minutes A Day Might Add Years To Your Life

Newsy (July 29, 2014) According to a new study, just five minutes of running or jogging a day could add years to your life. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Poses Little Threat To U.S.: CDC

Ebola Outbreak Poses Little Threat To U.S.: CDC

Newsy (July 29, 2014) The Ebola outbreak in West Africa poses little threat to Americans, according to officials with the Centers for Disease Control and Prevention. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins