Featured Research

from universities, journals, and other organizations

Protein 'switch' central to heart cell division

Date:
March 4, 2014
Source:
Johns Hopkins Medicine
Summary:
In a study that began in a pair of infant siblings with a rare heart defect, researchers say they have identified a key molecular switch that regulates heart cell division and normally turns the process off around the time of birth. Their research, they report, could advance efforts to turn the process back on and regenerate heart tissue damaged by heart attacks or disease.

In the heart muscle cell above, the arrows show an early sign of replication.
Credit: Johns Hopkins Medicine

In a study that began in a pair of infant siblings with a rare heart defect, Johns Hopkins researchers say they have identified a key molecular switch that regulates heart cell division and normally turns the process off around the time of birth. Their research, they report, could advance efforts to turn the process back on and regenerate heart tissue damaged by heart attacks or disease.

Related Articles


"This study offers hope that we can someday find a way to restore the ability of heart cells to divide in response to injury and to help patients recover from many kinds of cardiac dysfunction," says cardiologist Daniel P. Judge, M.D., director of the Johns Hopkins Heart and Vascular Institute's Center for Inherited Heart Diseases. "Things usually heal up well in many parts of the body through cell division, except in the heart and the brain. Although other work has generated a lot of excitement about the possibility of treatment with stem cells, our research offers an entirely different direction to pursue in finding ways to repair a damaged heart."

Unlike most other cells in the body that regularly die off and regenerate, heart cells rarely divide after birth. When those cells are damaged by heart attack, infection or other means, the injury is irreparable.

Judge's new findings, reported online March 4 in the journal Nature Communications, emerged from insights into a genetic mutation that appears responsible for allowing cells to continue replicating in the heart in very rare cases.

The discovery, Judge says, began with the tale of two infants, siblings born years apart but each diagnosed in their earliest weeks with heart failure. One underwent a heart transplant at three months of age; the other at five months. When pathologists examined their damaged hearts after they were removed, they were intrigued to find that the babies' heart cells continued to divide -- a process that wasn't supposed to happen at their ages.

The researchers then hunted for genetic abnormalities that might account for the phenomenon by scanning the small percent of their entire genome responsible for coding proteins. One stood out: ALMS1, in which each of the affected children had two abnormal copies.

The Johns Hopkins researchers also contacted colleagues at The Hospital for Sick Children in Toronto, Canada, who had found the same heart cell proliferation in five of its infant patients, including two sets of siblings. Genetic analysis showed those children had mutations in the same ALMS1 gene, which appears to cause a deficiency in the Alström protein that impairs the ability of heart cells to stop dividing on schedule. The runaway division may be responsible for the devastating heart damage in all of the infants, Judge says.

These mutations, it turned out, were also linked to a known rare recessive disorder called Alström syndrome, a condition associated with obesity, diabetes, blindness, hearing loss and heart disease.

In further experiments, the Johns Hopkins researchers cultured mouse heart cells, then turned off the ALMS1 gene. Compared to those with normal ALMS1 genes, the number of heart cells in samples without this gene increased by an additional 10 percent. The researchers then contacted colleagues at Jackson Laboratory in Maine who had genetically engineered and bred mice with an ALMS1 mutation. They found that the animals with the mutation had increased proliferation of heart cells after two weeks of age, compared to mice with a normal version of the ALMS1 gene. The cell proliferation did eventually stop in the mice, says Judge, an associate professor at the Johns Hopkins University School of Medicine.

Judge says precise knowledge of the regulatory role played by the ALMS1 mutation should advance the search for ways to help regenerate heart muscle tissue in a controlled fashion. Much work in the field of regeneration has been focused on the use of stem cells, which have the remarkable potential to develop into many different cell types. Judge cautions that efforts to manipulate ALMS1 to repair damage would be tricky, because uncontrolled proliferation may lead to serious and even lethal complications.

"The children who helped us recognize the importance of this gene were born with a rare condition that leads to heart failure and many other problems, such as diabetes, obesity, blindness and deafness," he says. "Now we hope to apply these discoveries to help millions of others with heart disease."


Story Source:

The above story is based on materials provided by Johns Hopkins Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lincoln T. Shenje, Peter Andersen, Marc K. Halushka, Cecillia Lui, Laviel Fernandez, Gayle B. Collin, Nuria Amat-Alarcon, Wendy Meschino, Ernest Cutz, Kenneth Chang, Raluca Yonescu, Denise A. S. Batista, Yan Chen, Stephen Chelko, Jane E. Crosson, Janet Scheel, Luca Vricella, Brian D. Craig, Beth A. Marosy, David W. Mohr, Kurt N. Hetrick, Jane M. Romm, Alan F. Scott, David Valle, Jürgen K. Naggert, Chulan Kwon, Kimberly F. Doheny, Daniel P. Judge. Mutations in Alström protein impair terminal differentiation of cardiomyocytes. Nature Communications, 2014; 5 DOI: 10.1038/ncomms4416

Cite This Page:

Johns Hopkins Medicine. "Protein 'switch' central to heart cell division." ScienceDaily. ScienceDaily, 4 March 2014. <www.sciencedaily.com/releases/2014/03/140304071037.htm>.
Johns Hopkins Medicine. (2014, March 4). Protein 'switch' central to heart cell division. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2014/03/140304071037.htm
Johns Hopkins Medicine. "Protein 'switch' central to heart cell division." ScienceDaily. www.sciencedaily.com/releases/2014/03/140304071037.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) — It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) — More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) — The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins