Featured Research

from universities, journals, and other organizations

Tackling the tiniest technology to make gadgets smaller, faster and more efficient

Date:
March 4, 2014
Source:
University of Cincinnati
Summary:
Researchers are discovering how to manipulate light to one day better view the world's tiniest objects through a super-lens, as well as how to hide an object in plain sight. The research focuses on exciting collective oscillations of metal electrons called plasmons, and on directing light through nanometer-thin metal films, about a thousand times thinner than a human hair. The result could empower integrated circuits or facilitate a super-lens with seven times the strength of a standard microscope, opening further research into fields such as studying microorganisms and viruses.

University of Cincinnati researchers are discovering how to manipulate light to one day better view the world's tiniest objects through a super-lens, as well as how to hide an object in plain sight.
Credit: Image courtesy of University of Cincinnati

University of Cincinnati researchers are discovering how to manipulate light to one day better view the world's tiniest objects through a super-lens, as well as how to hide an object in plain sight.

Masoud Kaveh-Baghbadorani, a doctoral student in the University of Cincinnati's physics program, will present this research on March 4, at the American Physical Society Meeting in Denver.

The research focuses on exciting collective oscillations of metal electrons called plasmons, and on directing light through nanometer-thin metal films, about a thousand times thinner than a human hair. The result could empower integrated circuits or facilitate a super-lens with seven times the strength of a standard microscope, opening further research into fields such as studying microorganisms and viruses.

Other applications involve bouncing light around an object by cloaking it with a metamaterial film. Instead of the object reflecting light and thus causing it to be seen, the light manipulation can make it invisible.

Plasmonics is an emerging field, but it has its limitations due to the loss of energy in the metal layers, which dissipate the plasmon energy into heat. Kaveh-Baghbadorani's research focuses on developing hybrid metal/organic nanowires that essentially work as an energy pump to compensate for metal losses in plasmonic nanostructures.

This energy pump results from exciton radiation, an electronic excitement in the semiconductor nanowires. Kaveh-Baghbadorani explains that the exciton functions somewhat like a hydrogen atom -- negative and positive charges are bound together. The research is examining energy transfer from excitons in semiconductor nanowires to different metal materials used to cover the nanowires, as well as the effects of the thickness of covering organic layers in energy transfer.

The researchers want to know how the dynamics of excitons are affected by the use of different organic materials, and how lifetime and energy transferring processes of nanowire excitons are modified by changing the design of the nanowires or the thickness of organic spacer layers.

Kaveh-Baghbadorani's advisor, Hans-Peter Wagner, a UC associate professor of physics, is one of the co-researchers on the project. "To achieve our goal, the knowledge of exciton relaxation and energy-transfer processes in plasmonic semiconductor nanowire heterostructures is of crucial importance," says Wagner, whose lab has a growth facility to allow researchers to produce a variety of plasmonic structures. The lab also has special optical methods to measure exciton relaxation processes on a sub-picosecond time-scale.

Co-researchers on the project include Wagner; Qiang Gao, research fellow, and Chennupati Jagadish, professor of engineering, Australian National University, where the semiconductor nanowires are produced; and Gerd Duscher, professor of engineering, University of Tennessee.


Story Source:

The above story is based on materials provided by University of Cincinnati. The original article was written by Dawn Fuller. Note: Materials may be edited for content and length.


Cite This Page:

University of Cincinnati. "Tackling the tiniest technology to make gadgets smaller, faster and more efficient." ScienceDaily. ScienceDaily, 4 March 2014. <www.sciencedaily.com/releases/2014/03/140304125939.htm>.
University of Cincinnati. (2014, March 4). Tackling the tiniest technology to make gadgets smaller, faster and more efficient. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2014/03/140304125939.htm
University of Cincinnati. "Tackling the tiniest technology to make gadgets smaller, faster and more efficient." ScienceDaily. www.sciencedaily.com/releases/2014/03/140304125939.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins