Featured Research

from universities, journals, and other organizations

A brain signal for psychosis risk

Date:
March 13, 2014
Source:
Elsevier
Summary:
Only one third of individuals identified as being at clinical high risk for psychosis actually convert to a psychotic disorder within a three-year follow-up period. This risk assessment is based on the presence of sub-threshold psychotic-like symptoms. Thus, clinical symptom criteria alone do not predict future psychosis risk with sufficient accuracy to justify aggressive early intervention, especially with medications such as antipsychotics that produce significant side effects.

Only one third of individuals identified as being at clinical high risk for psychosis actually convert to a psychotic disorder within a 3 year follow-up period. This risk assessment is based on the presence of sub-threshold psychotic-like symptoms.

Thus, clinical symptom criteria alone do not predict future psychosis risk with sufficient accuracy to justify aggressive early intervention, especially with medications such as antipsychotics that produce significant side effects.

Accordingly, there is a strong imperative to develop biomarkers of psychosis risk that can improve the ability to predict which individuals are most likely to transition to a psychotic disorder.

A study published in the current issue of Biological Psychiatry provides evidence that mismatch negativity (MMN), an event-related brain potential component derived from scalp electroencephalography (EEG) recordings, may be such a biomarker.

Mismatch negativity is an EEG signal that is elicited automatically from auditory cortex and frontal lobe regions of the brain in response to sounds that deviate from preceding sounds in pitch, duration, or other auditory features, even when one is not paying attention to the sounds. This electrophysiological measure of auditory deviance detection is thought to reflect short term plasticity in the brain, since it depends on the formation of a short term memory of recently heard sounds in order to detect a deviant sound.

Mismatch negativity is known to be reduced in patients with full-blown schizophrenia. So, to conduct this study, researchers assessed MMN in patients with schizophrenia, patients at clinical high risk for psychosis, and healthy control subjects. Compared to the healthy subjects, MMN was reduced in the patients with schizophrenia, as expected, but was also reduced in the high-risk patients. Analyses showed that MMN did not differ between the two patient groups.

"Our study results show that mismatch negativity deficits precede the onset of psychosis in clinical high risk individuals, and further shows that the larger the deficit, the more imminent the risk for conversion to a psychotic disorder," said Dr. Daniel Mathalon, Professor of Psychiatry at the University of California, San Francisco and senior author on the paper.

In addition, they also followed the clinical high-risk group for over twelve months and compared those who converted to a psychotic disorder with those who did not. MMN was reduced in those individuals who ultimately developed a psychotic disorder, compared to those who remained only in the clinical high risk category.

Mathalon added, "Importantly, our study results converge with those reported by several other studies from researchers in Europe and Asia. This remarkable convergence of findings points to the mismatch negativity as a promising EEG-based biomarker of psychosis risk that, with further development, could enhance our ability to identify which individuals are at greatest risk for psychosis and in greatest need of early treatment, particularly if the treatment is associated with potential adverse effects (such as antipsychotic medication)."

Indeed, there is substantial interest in developing diagnostic and prognostic tests for psychiatric disorders. "We do not currently use tests to help us make diagnoses or to inform patients about the likely long-term course of their illness," commented Dr. John Krystal, Editor of Biological Psychiatry. "However, this study suggests that one day it may be possible to develop this type of test."


Story Source:

The above story is based on materials provided by Elsevier. Note: Materials may be edited for content and length.


Journal Reference:

  1. Veronica B. Perez, Scott W. Woods, Brian J. Roach, Judith M. Ford, Thomas H. McGlashan, Vinod H. Srihari, Daniel H. Mathalon. Automatic Auditory Processing Deficits in Schizophrenia and Clinical High-Risk Patients: Forecasting Psychosis Risk with Mismatch Negativity. Biological Psychiatry, 2014; 75 (6): 459 DOI: 10.1016/j.biopsych.2013.07.038

Cite This Page:

Elsevier. "A brain signal for psychosis risk." ScienceDaily. ScienceDaily, 13 March 2014. <www.sciencedaily.com/releases/2014/03/140313092414.htm>.
Elsevier. (2014, March 13). A brain signal for psychosis risk. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2014/03/140313092414.htm
Elsevier. "A brain signal for psychosis risk." ScienceDaily. www.sciencedaily.com/releases/2014/03/140313092414.htm (accessed October 2, 2014).

Share This



More Mind & Brain News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com
Stopping School Violence

Stopping School Violence

Ivanhoe (Oct. 1, 2014) A trauma doctor steps out of the hospital and into the classroom to teach kids how to calmly solve conflicts, avoiding a trip to the ER. Video provided by Ivanhoe
Powered by NewsLook.com
Pineal Cysts: Debilitating Pain

Pineal Cysts: Debilitating Pain

Ivanhoe (Oct. 1, 2014) A tiny cyst in the brain that can cause debilitating symptoms like chronic headaches and insomnia, and the doctor who performs the delicate surgery to remove them. Video provided by Ivanhoe
Powered by NewsLook.com
Burning Away Brain Tumors

Burning Away Brain Tumors

Ivanhoe (Oct. 1, 2014) Doctors are 'cooking' brain tumors. Hear how this new laser-heat procedure cuts down on recovery time. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins