Featured Research

from universities, journals, and other organizations

Ensuring solid-state drives are up to scratch: Data buffering scheme improves performance of solid-state drives

Date:
March 13, 2014
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
A data buffering scheme improves the performance of solid-state drives in large-scale, data-intensive applications. Solid-state drives (SSDs) store digital information using electronic circuits. The power efficiency of SSDs and their ability to read and write data quickly means that they are becoming the primary storage device in computers. A major drawback of SSDs, however, is the limited number of times that data can be stored and deleted -- an aspect that hinders the use of these devices for data-intensive applications known as data-center environments.

A data buffering scheme improves the performance of solid-state drives in large-scale, data-intensive applications.

Solid-state drives (SSDs) store digital information using electronic circuits. The power efficiency of SSDs and their ability to read and write data quickly means that they are becoming the primary storage device in computers. A major drawback of SSDs, however, is the limited number of times that data can be stored and deleted -- an aspect that hinders the use of these devices for data-intensive applications known as data-center environments.

Qingsong Wei and co-workers at the A*STAR Data Storage Institute and National University of Singapore have developed a scheme for writing data to SSDs that could circumvent these problems to make solid-state drives useful for an even broader range of applications.

SSDs divide their storage space into distinct areas called blocks. A computer can either save large files across consecutive blocks -- a process known as sequential writing -- or write smaller files in blocks scattered throughout the device -- so-called random writing.

The researchers conducted an intensive workload study of the distribution of read and write request sizes over ten real enterprise workload traces supplied by the Storage Network Industry Association. They found that the highest traffic was from small, random requests of less than 64 kilobytes in size.

Generally, random writing is much slower -- by as much as four times -- than sequential writing. One way around this bottleneck is to use part of the memory as a 'buffer'. The buffer briefly stores data as it comes into the drive, which then enables sequential writing at a later time. Current buffer management approaches improve sequential writing but only at low buffer usage, wasting expensive buffer space.

Wei's team helped to solve this problem through an alternative approach that categorizes the data in the buffer by its popularity, which reflects how frequently the data is likely to be needed. The scheme retains popular blocks in the buffer, rather than deleting them, and sequentially writes less popular blocks to the SSD.

"Our buffer management scheme can increase sequential writing with high buffer utilization, thus improving performance and extending the lifetime of the SSD," says Wei.

The researchers tested the approach and demonstrated that the so-called popularity-aware buffer management scheme, or PAB, can achieve an improvement in performance of up to 72 per cent and triple the device lifetime compared to existing schemes. "Our method reduces the cost of SSDs by improving buffer utilization and is easy to implement," explains Wei. "Our next step will be to design smarter SSDs by integrating these same ideas with emerging non-volatile memory."


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Qingsong Wei, Lingfang Zeng, Jianxi Chen, Cheng Chen. A Popularity-Aware Buffer Management to Improve Buffer Hit Ratio and Write Sequentiality for Solid-State Drive. IEEE Transactions on Magnetics, 2013; 49 (6): 2786 DOI: 10.1109/TMAG.2013.2249579

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Ensuring solid-state drives are up to scratch: Data buffering scheme improves performance of solid-state drives." ScienceDaily. ScienceDaily, 13 March 2014. <www.sciencedaily.com/releases/2014/03/140313092516.htm>.
The Agency for Science, Technology and Research (A*STAR). (2014, March 13). Ensuring solid-state drives are up to scratch: Data buffering scheme improves performance of solid-state drives. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2014/03/140313092516.htm
The Agency for Science, Technology and Research (A*STAR). "Ensuring solid-state drives are up to scratch: Data buffering scheme improves performance of solid-state drives." ScienceDaily. www.sciencedaily.com/releases/2014/03/140313092516.htm (accessed September 21, 2014).

Share This



More Computers & Math News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
Oculus Reveals New Virtual Reality Headset Prototype

Oculus Reveals New Virtual Reality Headset Prototype

Newsy (Sep. 20, 2014) Oculus announced a new virtual reality headset prototype Saturday, saying the product is close to being ready for consumers. Video provided by Newsy
Powered by NewsLook.com
How To Protect Your Data In The Still-Vulnerable iOS 8

How To Protect Your Data In The Still-Vulnerable iOS 8

Newsy (Sep. 20, 2014) One security researcher says despite Apple's efforts to increase security in iOS 8, it's still vulnerable to law enforcement data-transfer techniques. Video provided by Newsy
Powered by NewsLook.com
How Much Privacy Protection Will Google's Android L Provide?

How Much Privacy Protection Will Google's Android L Provide?

Newsy (Sep. 19, 2014) Google's local encryption will make it harder for law enforcement or malicious actors to access the contents of devices running Android L. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins