Featured Research

from universities, journals, and other organizations

Mercury's contraction much greater than thought, new imaging shows

Date:
March 16, 2014
Source:
Carnegie Institution
Summary:
New global imaging and topographic data from MESSENGER show that the innermost planet has contracted far more than previous estimates. The results are based on a global study of more than 5,900 geological landforms, such as curving cliff-like scarps and wrinkle ridges, that have resulted from the planet's contraction as Mercury cooled. The findings are key to understanding the planet's thermal, tectonic, and volcanic history, and the structure of its unusually large metallic core.

This image shows a long collection of ridges and scarps on the planet Mercury called a fold-and-thrust belt. The belt stretches over 336 miles (540 kilometers). The colors correspond to elevation -- yellow-green is high and blue is low.
Credit: Image courtesy NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

New global imaging and topographic data from MESSENGER show that the innermost planet has contracted far more than previous estimates. The results are based on a global study of more than 5,900 geological landforms, such as curving cliff-like scarps and wrinkle ridges, that have resulted from the planet's contraction as Mercury cooled. The findings, published online March 16, 2014, in Nature Geoscience, are key to understanding the planet's thermal, tectonic, and volcanic history, and the structure of its unusually large metallic core.

Unlike Earth, with its numerous tectonic plates, Mercury has a single rigid, top rocky layer. Prior to the MESSENGER mission only about 45% of Mercury's surface had been imaged by a spacecraft. Old estimates, based on this non-global coverage, suggested that the planet had contracted radially by about ½ to 2 miles (0.8 to 3 kilometers) substantially less than that indicated by models of the planet's thermal history. Those models predicted a radial contraction of about 3 to 6 miles (5 to 10 kilometers) starting from the late heavy bombardment of the Solar System, which ended about 3.8 billion years ago.

The new results, which are based on the first comprehensive survey of the planet's surface, show that Mercury contracted radially by as much as 4.4 miles (7 kilometers) -- substantially more than the old estimates, but in agreement with the thermal models. Mercury's modern radius is 1,516 miles (2,440 kilometers).

"These new results resolved a decades-old paradox between thermal history models and estimates of Mercury's contraction," remarked lead author of the study, Paul Byrne, a planetary geologist and MESSENGER visiting investigator at Carnegie's Department of Terrestrial Magnetism. "Now the history of heat production and loss and global contraction are consistent. Interestingly, our findings are also reminiscent of now-obsolete models for how large-scale geological deformation occurred on Earth when the scientific community thought that Earth only had one tectonic plate. Those models were developed to explain mountain building and tectonic activity in the nineteenth century, before plate tectonics theory."

Byrne and his coauthors identified a much greater number and variety of geological structures on the planet than had been recognized in previous research. They identified 5,934 ridges and scarps attributed to global contraction, which ranged from 5 to 560 miles (9 to 900 kilometers) in length.

The researchers used two complementary techniques to estimate the contraction from their global survey of structures. Although the two estimates of radius change differed by 0.6 to 1 mile (1 to 1.6 kilometers), both were substantially greater than old estimates.

"I became interested in the thermal evolution of Mercury's interior when the Mariner 10 spacecraft sent back images of the planet's great scarps in 1974-75, but the thermal history models predicted much more global contraction than the geologists inferred from the scarps then observed, even correcting for the fact that Mariner 10 imaged less than half of Mercury's surface," noted Sean Solomon, principal investigator of the mission, former director of Carnegie's Department of Terrestrial Magnetism, and current director of the Lamont-Doherty Earth Observatory at Columbia University. "This discrepancy between theory and observation, a major puzzle for four decades, has finally been resolved. It is wonderfully affirming to see that our theoretical understanding is at last matched by geological evidence."


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. Paul K. Byrne, Christian Klimczak, A. M. Celβl Şengφr, Sean C. Solomon, Thomas R. Watters, Steven A. Hauck, II. Mercury’s global contraction much greater than earlier estimates. Nature Geoscience, 2014; DOI: 10.1038/ngeo2097

Cite This Page:

Carnegie Institution. "Mercury's contraction much greater than thought, new imaging shows." ScienceDaily. ScienceDaily, 16 March 2014. <www.sciencedaily.com/releases/2014/03/140316153223.htm>.
Carnegie Institution. (2014, March 16). Mercury's contraction much greater than thought, new imaging shows. ScienceDaily. Retrieved September 14, 2014 from www.sciencedaily.com/releases/2014/03/140316153223.htm
Carnegie Institution. "Mercury's contraction much greater than thought, new imaging shows." ScienceDaily. www.sciencedaily.com/releases/2014/03/140316153223.htm (accessed September 14, 2014).

Share This



More Space & Time News

Sunday, September 14, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

International Space Station Crew Returns Safely To Earth

International Space Station Crew Returns Safely To Earth

Newsy (Sep. 11, 2014) — The three-man crew touched down in Kazakhstan Wednesday after more than five months of science experiments in orbit. Video provided by Newsy
Powered by NewsLook.com
Solar Storm To Hit This Weekend, Scientists Not Worried

Solar Storm To Hit This Weekend, Scientists Not Worried

Newsy (Sep. 11, 2014) — Two solar flares which erupted in our direction this week will arrive this weekend. The resulting solar storm will be powerful but not dangerous. Video provided by Newsy
Powered by NewsLook.com
Solar Flare Surges Off Sun

Solar Flare Surges Off Sun

Reuters - US Online Video (Sep. 11, 2014) — NASA captures video of a significant flare surging off the sun. Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Europe Readies 'space Plane' For Sub-Orbital Test Flight

Europe Readies 'space Plane' For Sub-Orbital Test Flight

AFP (Sep. 10, 2014) — The European Space Agency on Tuesday put the final touches to its first-ever "space plane" before blasting it into sub-orbit for tests aimed at eventually paving the way to the continent's first space shuttle. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins