Featured Research

from universities, journals, and other organizations

Mercury's contraction much greater than thought, new imaging shows

Date:
March 16, 2014
Source:
Carnegie Institution
Summary:
New global imaging and topographic data from MESSENGER show that the innermost planet has contracted far more than previous estimates. The results are based on a global study of more than 5,900 geological landforms, such as curving cliff-like scarps and wrinkle ridges, that have resulted from the planet's contraction as Mercury cooled. The findings are key to understanding the planet's thermal, tectonic, and volcanic history, and the structure of its unusually large metallic core.

This image shows a long collection of ridges and scarps on the planet Mercury called a fold-and-thrust belt. The belt stretches over 336 miles (540 kilometers). The colors correspond to elevation -- yellow-green is high and blue is low.
Credit: Image courtesy NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

New global imaging and topographic data from MESSENGER show that the innermost planet has contracted far more than previous estimates. The results are based on a global study of more than 5,900 geological landforms, such as curving cliff-like scarps and wrinkle ridges, that have resulted from the planet's contraction as Mercury cooled. The findings, published online March 16, 2014, in Nature Geoscience, are key to understanding the planet's thermal, tectonic, and volcanic history, and the structure of its unusually large metallic core.

Related Articles


Unlike Earth, with its numerous tectonic plates, Mercury has a single rigid, top rocky layer. Prior to the MESSENGER mission only about 45% of Mercury's surface had been imaged by a spacecraft. Old estimates, based on this non-global coverage, suggested that the planet had contracted radially by about ½ to 2 miles (0.8 to 3 kilometers) substantially less than that indicated by models of the planet's thermal history. Those models predicted a radial contraction of about 3 to 6 miles (5 to 10 kilometers) starting from the late heavy bombardment of the Solar System, which ended about 3.8 billion years ago.

The new results, which are based on the first comprehensive survey of the planet's surface, show that Mercury contracted radially by as much as 4.4 miles (7 kilometers) -- substantially more than the old estimates, but in agreement with the thermal models. Mercury's modern radius is 1,516 miles (2,440 kilometers).

"These new results resolved a decades-old paradox between thermal history models and estimates of Mercury's contraction," remarked lead author of the study, Paul Byrne, a planetary geologist and MESSENGER visiting investigator at Carnegie's Department of Terrestrial Magnetism. "Now the history of heat production and loss and global contraction are consistent. Interestingly, our findings are also reminiscent of now-obsolete models for how large-scale geological deformation occurred on Earth when the scientific community thought that Earth only had one tectonic plate. Those models were developed to explain mountain building and tectonic activity in the nineteenth century, before plate tectonics theory."

Byrne and his coauthors identified a much greater number and variety of geological structures on the planet than had been recognized in previous research. They identified 5,934 ridges and scarps attributed to global contraction, which ranged from 5 to 560 miles (9 to 900 kilometers) in length.

The researchers used two complementary techniques to estimate the contraction from their global survey of structures. Although the two estimates of radius change differed by 0.6 to 1 mile (1 to 1.6 kilometers), both were substantially greater than old estimates.

"I became interested in the thermal evolution of Mercury's interior when the Mariner 10 spacecraft sent back images of the planet's great scarps in 1974-75, but the thermal history models predicted much more global contraction than the geologists inferred from the scarps then observed, even correcting for the fact that Mariner 10 imaged less than half of Mercury's surface," noted Sean Solomon, principal investigator of the mission, former director of Carnegie's Department of Terrestrial Magnetism, and current director of the Lamont-Doherty Earth Observatory at Columbia University. "This discrepancy between theory and observation, a major puzzle for four decades, has finally been resolved. It is wonderfully affirming to see that our theoretical understanding is at last matched by geological evidence."


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. Paul K. Byrne, Christian Klimczak, A. M. Celβl Şengφr, Sean C. Solomon, Thomas R. Watters, Steven A. Hauck, II. Mercury’s global contraction much greater than earlier estimates. Nature Geoscience, 2014; DOI: 10.1038/ngeo2097

Cite This Page:

Carnegie Institution. "Mercury's contraction much greater than thought, new imaging shows." ScienceDaily. ScienceDaily, 16 March 2014. <www.sciencedaily.com/releases/2014/03/140316153223.htm>.
Carnegie Institution. (2014, March 16). Mercury's contraction much greater than thought, new imaging shows. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/2014/03/140316153223.htm
Carnegie Institution. "Mercury's contraction much greater than thought, new imaging shows." ScienceDaily. www.sciencedaily.com/releases/2014/03/140316153223.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Space & Time News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

What NASA Wants To Learn From Its 'Year In Space' Tests

What NASA Wants To Learn From Its 'Year In Space' Tests

Newsy (Mar. 28, 2015) — Astronaut Scott Kelly and cosmonaut Mikhail Kornienko will spend a year in space running tests on human physiology and psychology. Video provided by Newsy
Powered by NewsLook.com
Crew Starts One-Year Space Mission

Crew Starts One-Year Space Mission

Reuters - News Video Online (Mar. 28, 2015) — Russian-U.S. crew arrives safely at the International Space Station for the start of a ground-breaking year-long stay. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com
Why So Many People Think NASA's Asteroid Mission Is A Waste

Why So Many People Think NASA's Asteroid Mission Is A Waste

Newsy (Mar. 27, 2015) — The Asteroid Retrieval Mission announced this week bears little resemblance to its grand beginnings. Even NASA scientists are asking, "Why bother?" Video provided by Newsy
Powered by NewsLook.com
Space Station Crew Docks Safely

Space Station Crew Docks Safely

Reuters - News Video Online (Mar. 27, 2015) — NASA TV footage shows the successful docking of a Russian Soyuz craft to the International Space Station for a year-long mission. Rough cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins