Featured Research

from universities, journals, and other organizations

Physicists use geometry to understand 'jamming' process

Date:
March 20, 2014
Source:
University of Oregon
Summary:
Physicists using a supercomputer and mathematically rich formulas have captured fundamental insights about what happens when objects moving freely jam to a standstill. Their approach captures jamming -- the point at which objects come together too tightly to move -- by identifying geometric signatures. The payoff, while likely far down the road, could be a roadmap to preventing overfilled conveyor belts from stopping in factories, separating oil deposits trapped in sand, or allowing for the rapid, efficient transfer of mass quantities of data packets on the Internet.

University of Oregon physicists using a supercomputer and mathematically rich formulas have captured fundamental insights about what happens when objects moving freely jam to a standstill.
Credit: Image courtesy of University of Oregon

University of Oregon physicists using a supercomputer and mathematically rich formulas have captured fundamental insights about what happens when objects moving freely jam to a standstill.

Related Articles


Their approach captures jamming -- the point at which objects come together too tightly to move -- by identifying geometric signatures. The payoff, while likely far down the road, could be a roadmap to preventing overfilled conveyor belts from stopping in factories, separating oil deposits trapped in sand, or allowing for the rapid, efficient transfer of mass quantities of data packets on the Internet, say UO doctoral student Peter K. Morse and physics professor Eric I. Corwin.

Their paper "Geometric Signatures of Jamming in the Mechanical Vacuum" is online ahead of print in the journal Physical Review Letters.

"The history of the field has been looking at mechanical properties really close to the jamming transition, right where a sand pile starts to push back," said Corwin, whose research is supported by a National Science Foundation Faculty Early Career Development award. "What we're doing that is really different is we're asking what happens before the sand pile starts to push back. When it's not pushing back, you can't get any information about its mechanical properties. So, instead, we're looking at the geometry -- where particles are in relation to one another."

The problem, Corwin said, involves an ages-old question used to introduce physics in early education: Is sand a liquid, a solid or a gas? "Make a sand pile, step back and it holds its shape, so clearly it's a solid," he said. "But I can take that same sand and pour it into a bucket; it flows in and takes the shape of the container and has a level surface, so clearly sand is a liquid. Or I can put a top on the bucket and shake it around really hard, and when I do that the sand fills all of the space. Clearly sand is a gas. Except, it's none of those things.

"This has led to granular materials, or little chunks of things, being referred to as a fourth state of matter," he continued. "Is sand something else? One thing everyone agrees on -- the one feature about sand or piles of gravel or piles of glass spheres or ball bearings, that makes them really unique -- is that when spread out they can't support any load. If you keep compressing them, and they get denser and denser, you reach a density where it's like flipping a switch. All of a sudden they can support a load."

The key, the researchers said, is identifying the nearest neighbors of particles. This is done using the Voronoi construction, a method of dividing spaces into a number of regions that was devised by Georgy Feodosevich Voronoy, a Russian mathematician in the late 19th century.

"Imagine a cluster of islands in the ocean," Morse said. "If you found yourself dropped in the water you would swim to the nearest island. You could say that the island 'owns' the region of ocean closest to it and islands that 'own' adjacent patches of ocean are nearest neighbors. We use this to characterize the internal geometry of a sand pile."

To study what happens to this internal geometry as a sand pile is compressed, they entered data into the UO's new ACISS (Applied Computational Instrument for Scientific Synthesis) supercomputer, applying the Voronoi construction.

"Using these cells, called Voronoi tesslations, you can find out all you want to know about a geometric object -- its volume, surface area, number of sides -- you get it all," said Morse, who also is a fellow of the UO's GK-12 Science Outreach Program that links chemistry and physics graduate students with the state's elementary and middle schools. "All of the geometric features that we can think of so far show us that systems below jamming are very different than systems that are about to jam or that are jammed already. We end up finding that this purely geometric construct will exhibit this phase transition."

And by carrying out their computations into multidimensional spaces -- up to the eighth dimension in this project -- researchers learned that the physics of the jamming process can be simply identified by seeing what happens in the transition from 2-D to 3-D spaces. It's at that level, applying the knowledge to high-dimensional spaces, Corwin said, that application to expanding data transfer capabilities come into focus.

"The new ACISS supercomputer puts the UO at the forefront of a revolution that applies cloud computing to scientific investigation in physics, biology, chemistry, human brain science and computer science," said Kimberly Andrews Espy, vice president for research and innovation and dean of the UO Graduate School. "By incorporating the powerful ACISS computer into this project, Dr. Corwin and his team were able to examine the geometry of jamming and provide a new perspective on the process that has potential applications down the road for everything from manufacturing to computing to power production."


Story Source:

The above story is based on materials provided by University of Oregon. Note: Materials may be edited for content and length.


Journal Reference:

  1. Peter K. Morse, Eric I. Corwin. Geometric Signatures of Jamming in the Mechanical Vacuum. Physical Review Letters, 2014; 112 (11) DOI: 10.1103/PhysRevLett.112.115701

Cite This Page:

University of Oregon. "Physicists use geometry to understand 'jamming' process." ScienceDaily. ScienceDaily, 20 March 2014. <www.sciencedaily.com/releases/2014/03/140320173412.htm>.
University of Oregon. (2014, March 20). Physicists use geometry to understand 'jamming' process. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2014/03/140320173412.htm
University of Oregon. "Physicists use geometry to understand 'jamming' process." ScienceDaily. www.sciencedaily.com/releases/2014/03/140320173412.htm (accessed October 24, 2014).

Share This



More Computers & Math News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Apps to Organize Your Life

The Best Apps to Organize Your Life

Buzz60 (Oct. 23, 2014) — Need help organizing your bills, schedules and other things? Ko Im (@konakafe) has the best apps to help you stay on top of it all! Video provided by Buzz60
Powered by NewsLook.com
Nike And Apple Team Up To Create Wearable ... Something

Nike And Apple Team Up To Create Wearable ... Something

Newsy (Oct. 23, 2014) — For those looking for wearable tech that's significantly less nerdy than Google Glass, Nike CEO Mark Parker says don't worry, It's on the way. Video provided by Newsy
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins